Digital Image Processing

Frequency Domain Filtering



clear all; close all;
a=imread('testpatl.png’);b=im2double(a);
figure;imshow(b);

Fb = fft2(b);Fbshift=fftshift(Fb);
figure;imshow(log(abs(Fbshift)+0.00000001),[]);

FMask=zeros(256,256);FMask([96:160],[96:160])=1.0;
Fbband=Fbshift.*FMask;
figure;imshow(log(abs(Fbband)+0.0000001),[D;
Fbband=ifftshift(Fbband);bandrebuilt=ifft2(Fbband);
figure;imshow(bandrebuilt);

FMask=zeros(256,256);FMask([64:192],[64:192])=1.0;
Fbband=Fbshift.*FMask;
figure;imshow(log(abs(Fbband)+0.0000001),[]);
Fbband=ifftshift(Fbband);bandrebuilt=ifft2(Fbband);
figure;imshow(bandrebuilt);

FMask=zeros(256,256);FMask([32:224],[32:224])=1.0;
Fbband=Fbshift.*FMask;
figure;imshow(log(abs(Fbband)+0.0000001),[]);
Fbband=ifftshift(Fbband);bandrebuilt=ifft2(Fbband);
figure;imshow(bandrebuilt);
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恢复原始图像
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The central part of FT, I.e.

_ the low frequency

E==)> components are responsible
for the general gray-level
appearance of an image.

The high frequency
— components of FT are

responsible for the detall

Information of an image.
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Image Filtering

+

= Image filtering technigues:
> Spatial domain methods
> Frequency domain methods
= Spatial (time) domain technigues are

techniques that operate directly on
pixels.

= Frequency domain techniques are
based on modifying the Fourier
transform of an image.



Frequency Domain Filtering

Frequency domain filtering operation

. Filter Inverse
Fourier . . i
— function Fourier
transform
Hu,v) transform

Flu,v) Hu, v)F(u,v)

Post-
processing

Pre-
processing,

f(x.y) g(x.y)
[nput Enhanced
image image

FIGURE 4.5 Basicsteps for filtering in the frequency domain.



Frequency Domain Filtering

= Edges and sharp transitions (e.g., noise) Iin
an image contribute significantly to high-
frequency content of FT.

= Low frequency contents in the FT are
responsible to the general appearance of the
Image over smooth areas.

= Blurring (smoothing) is achieved by
attenuating range of high frequency
components of FT.



Convolution iIn Time Domain

+

M-1 M-1

g(x,y)= 2 2h(x,y)f(x=x,y=y")

X'=0 y'=0

= T(x,y)*h(x,y)

= f(X,y) Is the Input image
= g(Xx,y) Is the filtered image
= h(X,y): Impulse response



Convolution Theorem

+

— Multiplication |
CUVFFUHEY) Mo
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gixy)=f(xy) ® h(xy) ~ Convolutionin P
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 Filtering in Frequency Domain with H(u,v) is
equivalent to filtering in Spatial Domain with h(x,y).
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power

Frequency content of the signal
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blue line = sum of 3 sinusoids (20,
50, and 80 Hz) + random noise

red line = sum of 3 sinusoids
without noise



onvolution Property of the Fourier
ansform

Let functions f (r,c)and g(r,c) have * = convolution
Fourier Transforms F(u,v) and G(u, V). = multiplication
Then,
{f+g}=F G convolution equals the product
Moreover, of the Fourier Transforms.
F{f g}=F *G. Similarly, the Fourier

Transform of a multiplication
is the convolution of the
Fourier Transforms




Convolution via Fourier Transform

Image & Mask Transforms

/ Pixel-wise Inverse
Product Transform




How to Convolve via FT in Matlab

© 0 NOoO Ok WD

Read the image from a file into a variable, say 1.

Read in or create the convolution mask, h. | The mask is usually 1-band
Compute the sum of the mask: s = sum(sum(h));

If's == 0, set s = 1; For color images you may
Create: H = zeros(size(l)); need to do each step for
Copy h into the middle of H. each band separately.
Shift H into position: H = 1fftshift(H);

Take the 2D FT of 1 and H: FI=Fft2(l); FH=FFt2(H);
Pointwise multiply the FTs: FJ=FI .*FH;

10. Compute the inverse FT: J = real(1Tft2(FJ));
11. Normalize the result: J = J/s;



Coordinate Origin of the FFT

Center =
(floor(R/2)+1, floor(C/2)+1)
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Matlab’s fftshift and ifftshift

¥

J = fftshift(l):
| (1,1) = J (LR/2]+1, | C/2] +1)

| = ifftshift(J): 2 Eﬂ
J (LRR2)+1, LCI2)+1) — 1 (1,2) .| :

where [x] = Floor(x) =the largest integer smaller than x.



Algorithm Complexity

= We can compute the DFT directly using
the formula

= An N point DFT would require N® floating
point multiplications per output point

= Since there are N* output points , the
computational complexity of the DFT is N*

« N*=4x10° for N=256
= Bad news! Many hours on a workstation



Algorithm Complexity
F(u,v)=F (-u,—V)

= [he FFT algorithm was developed in the 60’s for
seismic exploration

= Reduced the DFT complexity to 2N“log,N
= 2N°log,N~10° for N=256
= A few seconds on a workstation
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Frequency

Examples of Filters

H(u)

= i

H(u)

= i

Spatial




Blurring: Averaging / Lowpass Filtering

Blurring results from:

= Pixel averaging in the spatial domain:

= Each pixel in the output is a weighted average of its
neighbors.

= Is a convolution whose weight matrix sums to 1.

= Lowpass filtering in the frequency domain:
= High frequencies are diminished or eliminated

= Individual frequency components are multiplied by a
nonincreasing function of o such as /o = 1/N(u2+v?).



ldeal Lowpass Filter

Image size: 512x512
FD filter radius: 16

AR I/ JE U 28

Multiply by .. convolve
this, or ... by this

I Fourier Domain Rep. I Spatial Representation I Central Profile



ldeal Lowpass Filter

Image size: 512x512
FD filter radius: 8

Multiply by JI . convolve E————
.rhis, or‘ s by This d ‘I. I frequency domain |

6} ipaha\domain 1

. » : | |

Fourier Domain Rep. I Spatial Representation I Central Profile



Power Spectrum and Phase
of an Image Consider the

image below:
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ldeal Lowpass Filter

Image size: 512x512
FD filter radius: 16
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ldeal Lowpass Filter

=

Image size: 512x512
FD filter radius: 16
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I Filtered Image I Filtered Power Spectrum I Original Image


Brenda
附注
低通滤波器起到模糊效果，但容易出现马赛克


ldeal low-pass filter (ILPF)

1 D(U,v)<D,

H(u,v) =+

0 D(u,v)>D,
D(u,v)=[(u-M[2)* +(v—N/2)*1"

(M/2,N/2): center in frequency domain.
D, is called the cutoff frequency (& 1-411%).



Ideal in frequency
domain means
non-ideal In
spatial domain,
ViCce versa.
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a b FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff
¢ d frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in Fig. 4.11(b). The
¢ [ power removed by these filters was 8.5.4,3.6.2, and 0.5% of the total, respectively.



Shape of ILPF
1

H(:Ti.vj Hiu. v)

+ D[]
it

Frequency domain

h(x.y)
Spatial domain _ ~




Fourier transform

‘Lbasis functions

Approximating a
sguare wave as the
sum of sine waves.


Brenda
附注
傅里叶变换不能模拟出方波尖锐的角


F(u,v)-H(u,v) €2 f(x,y) ® h(x,y)
i The limiting case...

Frequency'domain Spatial' Domain
O |0 |0

H(u,v)=1 h(x,y)= [0 [1 |0
And vice versa. 0 |0 |0




Butterworth Lowpass Filters
(BLPF) 1

H(u,v)=

— —12n
. D(u,v
= Smooth transfer function, no 1+ (u,v)
sharp discontinuity, no clear i Do |
cutoff frequency.
H(u,v) H(u, v)
) 10}
~ ,-'e. I- 11 — U 5
el A, = D(u. v)
o e i

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.



Butterworth Lowpass Filters (BLPF)

LA A

Order=5 Order=20

Order=1 Order=2
H(u,v)=—— = -
14 D(u,v)

D

0

2n *Spatial representations of BLPF with different orders

*Notice the ringing of different orders
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a b FIGURE 4.15 ia) Original image. (b)-i1) Resulls of fltering with BLPEFs of order 2,
¢ d  with cutofl frequencies al radii of 5, 15, 30, 80, and 230, a8 shown in Fig. 4.11{b).

e [ Compare with Fig. 4.12.
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Gaussian Lowpass Filters (GLPF)

o Smooth transfer function, D*(u,v)

smooth impulse response, H (u,v)=e 2Dy
no ringing

Hu, v) Hu v)
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D, = 40
D, = 100
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FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D,,.



GLPF

H(Lu}
Frequency
domain
Gaussian lowpass filter
) h(x)
Spatial 4

domain
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FIGURE 4.18 (a) Original image. (b)—() Results of fltering with Gaussian lowpass  a b
filters with cutofl frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in ¢ d
e f

Fig. 4.11(b). Compare with Figs. 4.12 and 4.15.

<= NO ringing artifacts



Examples of Lowpass Filtering

S

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
{(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
yaear. Accordingiy, the
company's software may
recognize a date using 00"

as 1900 rather than t:!%r
2000.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"

as 1900 rather than t%r
2000.
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Examples of Lowpass Filtering

Original image and its FT Filtered image and its FT



Sharpening: Differencing / Highpass Filtering

+

Sharpening results from adding to the image, a
copy of itself that has been:

= Pixel-differenced in the spatial domain:

= Each pixel in the output is a difference between itself and a
weighted average of its neighbors.

= Is a convolution whose weight matrix sums to 0.

s Highpass filtered in the frequency domain:
= High frequencies are enhanced or amplified.

= Individual frequency components are multiplied by an
increasing function of ® such as am = aN(u2+v?), where o is
a constant.




ldeal Highpass Filter

* P AR = 10 Y8 U

» B

Multiply by
this, or ...

I Fourier Domain Rep. I Spatial Representation

... convolve
by this

T

Image size: 512x512
FD notch radius: 16

spatial domain

I Central Profile




ldeal Highpass Filter

Image size: 512x512
FD notch radius: 16

I Original Image I Power Spectrum I Ideal HPF in FD



ldeal Highpass Filter

Image size: 512x512
FD notch radius: 16

I Filtered Image” I Filtered Power Spectrum I Original Image



High-pass Filters
i ey JH RS I

& Hpp(u,v)=1-H(u,v)

1 D(u,v) >D
= ldeal: H(u,V) = °
0 D(u,v) <D,
1
H(u,v) [ =
= Butterworth: [H V) - p
0
1+
D(u,v)

= Gaussian: H (u, V) _1_p D uvi2n;
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FIGURE 4.22 Top row: Perspective plot, image representation. and cross section of a typical ideal highpass

filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



High-pass Filters

a b ¢

FIGURE 4.23 Spatial representations of typical (a) weal. (b)) Butterworth, and () Gaussian frequency
domain highpass filters,and corresponding grav-level profiles.



|deal High-pass Filtering

ringing artifacts
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FIGURE 4.24 Rosults of weal lhighpoass Gltermg the woage o Frgs S 1700 with D= 150 300 and - N,
respectively. Problems with ringing are gquite evidentin (ag and (b



Butterworth High-pass Filtering
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FIGURE 4.25 Results of hughpass liltering the image in Fig. 4.1 1a) using a BHPF of order 2 with 1y, = 15,
At and s, respectively. These resulls are much smoother than those obtamed with an [LPFE.



Gaussian High-pass Filtering
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FIGURE 4.26 Rusults of highpass Oltering the image of Freo 41180 using a GHPE of order 2 with 13, = 15,
Mand S respectively. Compare with Frgs, 424 and 4,25,



Gaussian High-pass Filtering

Gaussian filter H(u,v)

Original image

Filtered image and its FT



Laplacian in Frequency

i Domain

[52f(x y) , O°f(x )

1=—(u®+v*)F(u,v)

OX > ('3y
ll_ 2 2
Hl(U,V) =—(u”+v7)
_ Frequency
Spatial domain

v?f ~o°f  9°f domain _
Y + oy === Laplacian operator




The Uncertainty Relation

AN E!

[ . N
N 3%/]\'

space

If AXAYy is the extent of
the object in space and
If AUAVisits extentin
frequency then,

AXAY-AUAV >

2

frequency

167

A small object in space
has a large frequency
extent and vice-versa.



|ldeal Filters Do Not Produce
|deal Results

Frequency Domain Representation of Ideal LPF hir) 1 Spatial Domain Representation of Ideal LPF

IFT i |

A sharp cutoff in the ..causes ringing in the
frequency domain... spatial domain.



|ldeal Filters Do Not Produce
|deal Results

Blurring the image above ..distorts the results with
with an ideal lowpass filter... ringing or ghosting.



Optimal Filter: The Gaussian

Frequency Domain Representation of Gaussian LPF a(r) 1 Spatial Domain Representation of Gaussian LPF

IFT

The Gaussian filter optimizes the uncertainty relation.
It provides the sharpest cutoff with the least ringing.




One-Dimensional Gaussian

+




Two-Dimensional Gaussian

R=512,C =512

[ n=2576=64

If nand c are

different forr &c..
g(r,c)=g(r)g(c)

C(r=u)? (yue)’
— 1 e 20° 202

o2 (X—p, )+ 02 (Y= )

— 1 e 2002

..orif nand c are
the same for r & c.

(r—u)*+ (c-p)?
o(ro)-Ae

o’2r




Optimal Filter: The Gaussian

Gaussian LPF

With a gaussian lowpass .. is blurred without ringing
filter, the image above ... or ghosting.



Gau33|an Lowpass Filter

I RGN Er

Imag.e sizef 512)_(512
I SD filter sigma = 8

Multiply by
this, or ...

.. convolve 25— e
N |
by this [

400 450 S0

I Fourier Domain Rep. I Spatial Representation I Central Profile



Gaussian Lowpass Filter

Multiply by
this, or ...

Fourier Domain Rep.

... convolve
by this

I Spatial Representation

Image size: 512x512
SD filter sigma = 2

EEEEEE

I Central Profile




Gaussian Lowpass Filter

Image size: 512x512
SD filter sigma = 8

| "
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I Original Image I Power Spectrum I Gaussian LPF in FD



Gaussian Lowpass Filter

Image size: 512x512
SD filter sigma = 8

I Filtered Image I Filtered Power Spectrum I Original Image



Comparison of lIdeal and
iGaussian Lowpass Filters

I Ideal LPF I Original Image I Gaussian LPF



Gaus3|an nghpass Filter

» B

e e A RV 2 |
Image size: 512x512
I FD notch sigma = 8

Multiply by .. convolve e —
this, or ... by this | 114
.' | [ uency domain

I Fourier Domain Rep. I Spatial Representation I Central Profile



Gaussian Highpass Filter

Image size: 512x512
FD notch sigma = 8

S 1T

il AT
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I Original Image I Power Spectrum I Gaussian HPF in FD



Gaussian Highpass Filter

Image size: 512x512
FD notch sigma = 8

I Filtered Image” I Filtered Power Spectrum I Original Image



Comparison of lIdeal and
*Gaussian Highpass Filters

“signed image; O
mapped to 128

I Ideal HPF* I Original Image I Gaussian HPF*



Another Highpass Filter

“signed image; O
mapped to 128

I original image I filter power spectrum I filtered image™



|ldeal Bandpass Filter

» B
LN ES
“signed image; O
I mapped to 128

I original image I filter power spectrum I filtered image™



Gaussian Bandpass Filter

YA
Image size: 512x512
sigma = 2 - sigma = 8

4

- H \‘ \‘ 7 4,1
SR IR UE 2%

Fourier Domain Rep. I Spatial Representation I Central Profile



Gaussian Bandpass Filter

Image size: 512x512
sigma = 2 - sigma = 8

I Original Image I Power Spectrum I Gaussian BPF in FD



Gaussian Bandpass Filter

Image size: 512x512
sigma = 2 - sigma = 8

I Filtered Image” I Filtered Power Spectrum I Original Image

“signed image; O
mapped to 128



Comparison of lIdeal and
*Gaussian Bandpass Filters

“signed image; O
mapped to 128

I Ideal BPF" I Original Image I Gaussian BPF*



The term watershed

D FT . M atl ab refers to’a ridge thiat ...

idemo

drained by different

... divides@reas
river systems.
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clear all;close all;
iptsetpref(‘ImshowBorder','tight’);
bw = imread('text.png’);
imshow(bw);

a = bw(32:45,88:98);

figure, imshow(a);

C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));
figure, imshow(C,[])

max(C(:));

thresh = 60;

figure, imshow(C > thresh);

el
e By



i Homework V11

= Design your own DFT exploration experimence.
It can be either of the following

« DFT and reconstruction

= DFT Real/lmagenary part, magnitude/phase

» Frequency domain filtering

« DFT based image analysis (Detection/Editing...)

= Submit your test images, codes, experiment
results and documents.



+

End of Lecture
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