
Digital Image Processing

Frequency Domain Filtering



DFT – Matlab demo

clear all; close all;
a=imread('testpat1.png');b=im2double(a);
figure;imshow(b); 
Fb = fft2(b);Fbshift=fftshift(Fb);
figure;imshow(log(abs(Fbshift)+0.00000001),[]);

FMask=zeros(256,256);FMask([96:160],[96:160])=1.0;
Fbband=Fbshift.*FMask;
figure;imshow(log(abs(Fbband)+0.0000001),[]);
Fbband=ifftshift(Fbband);bandrebuilt=ifft2(Fbband);
figure;imshow(bandrebuilt); 

FMask=zeros(256,256);FMask([64:192],[64:192])=1.0;
Fbband=Fbshift.*FMask;
figure;imshow(log(abs(Fbband)+0.0000001),[]);
Fbband=ifftshift(Fbband);bandrebuilt=ifft2(Fbband);
figure;imshow(bandrebuilt);

FMask=zeros(256,256);FMask([32:224],[32:224])=1.0;
Fbband=Fbshift.*FMask;
figure;imshow(log(abs(Fbband)+0.0000001),[]);
Fbband=ifftshift(Fbband);bandrebuilt=ifft2(Fbband);
figure;imshow(bandrebuilt);

Brenda
附注
恢复原始图像
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IFT

Signal decomposition(Coefficient computation)

Signal reconstruction



IFT

IFT



The central part of FT, i.e. 
the low frequency 
components are responsible 
for the general gray-level 
appearance of an image.

The high frequency 
components of FT are 
responsible for the detail 
information of an image.
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Image Filtering

Image filtering techniques:
Spatial domain methods
Frequency domain methods

Spatial (time) domain techniques are 
techniques that operate directly on 
pixels.
Frequency domain techniques are 
based on modifying the Fourier 
transform of an image.



Frequency Domain Filtering 



Edges and sharp transitions (e.g., noise) in 
an image contribute significantly to high-
frequency content of FT.
Low frequency contents in the FT are 
responsible to the general appearance of the 
image over smooth areas. 
Blurring (smoothing) is achieved by 
attenuating range of high frequency 
components of FT.

Frequency Domain Filtering 



f(x,y) is the input image
g(x,y) is the filtered image
h(x,y): impulse response

Convolution in Time Domain
g(x,y)=h(x,y)⊗f(x,y)
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Convolution Theorem

G(u,v)=F(u,v)⋅H(u,v)

• Filtering in Frequency Domain with H(u,v) is 
equivalent to filtering in Spatial Domain with h(x,y). 

g(x,y)= f(x,y) ⊗ h(x,y)

Multiplication in 
Frequency Domain

Convolution in 
Time Domain



blue lineblue line = sum of 3 sinusoids after 
filtering in time domain

1x average [1 1 1 1 1] / 5

blue lineblue line = sum of 3 sinusoids after 
filtering  in frequency domain

cut-off 90 Hz

blue lineblue line = sum of 3 sinusoids (20, 
50, and 80 Hz) + random noise

red linered line = sum of 3 sinusoids 
withouwithout noise



Convolution Property of the Fourier 
Transform

.}{          

Moreover,
.}{          

Then,
  ).,( and ),( TransformsFourier 

 have ),( and ),( functionsLet 

GFgf

GFgf

vuGvuF
crgcrf

∗=⋅

⋅=∗

F

F The Fourier Transform of a 
convolution equals the product 
of the Fourier Transforms.  
Similarly, the Fourier 
Transform of a multiplication 
is the convolution of the 
Fourier Transforms

The Fourier Transform of a 
convolution equals the product 
of the Fourier Transforms.  
Similarly, the Fourier 
Transform of a multiplication 
is the convolution of the 
Fourier Transforms

* = convolution
· = multiplication



Convolution via Fourier Transform

Image & Mask Transforms

Pixel-wise 
Product

Inverse 
Transform



1. Read the image from a file into a variable, say I.
2. Read in or create the convolution mask, h.
3. Compute the sum of the mask:  s = sum(sum(h));
4. If  s == 0, set  s = 1;
5. Create:  H = zeros(size(I));
6. Copy h into the middle of H.
7. Shift H into position:  H = ifftshift(H);
8. Take the 2D FT of I and H: FI=fft2(I); FH=fft2(H);
9. Pointwise multiply the FTs:  FJ=FI.*FH;
10. Compute the inverse FT:  J = real(ifft2(FJ));
11. Normalize the result:  J = J/s;

How to Convolve via FT in Matlab

For color images you may 
need to do each step for 
each band separately.

For color images you may 
need to do each step for 
each band separately.

The mask is usually 1-bandThe mask is usually 1-band



Coordinate Origin of the FFT
Center =
(floor(R/2)+1, floor(C/2)+1)
Center =
(floor(R/2)+1, floor(C/2)+1)

Even EvenOdd Odd

Image Origin Weight Matrix OriginImage Origin Weight Matrix Origin

After FFT shift After IFFT shiftAfter FFT shift After IFFT shift
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Matlab’s fftshift and ifftshift

J = fftshift(I): 

I (1,1) → J ( ⎣R/2⎦ +1, ⎣C/2⎦ +1)

I = ifftshift(J):

J ( ⎣R/2⎦ +1, ⎣C/2⎦ +1) → I (1,1)

where ⎣x⎦ = floor(x) = the largest integer smaller than x.
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Algorithm Complexity

We can compute the DFT directly using 
the formula

An N point DFT would require  N2 floating 
point multiplications per output point
Since there are N2 output points , the 
computational complexity of the DFT is N4

N4=4x109  for N=256
Bad news! Many hours on a workstation



Algorithm Complexity

The FFT algorithm was developed in the 60’s for 
seismic exploration
Reduced the DFT complexity to 2N2log2N

2N2log2N~106 for N=256
A few seconds on a workstation

original image Fourier log magnitude Fourier phase

*( , ) ( , )F u v F u v= − −



Spatial
domain

Gaussian lowpass filter Gaussian highpass filter

Frequency
domain

Examples of Filters



Blurring: Averaging / Lowpass Filtering

Blurring results from: 
Pixel averaging in the spatial domain:

Each pixel in the output is a weighted average of its 
neighbors.
Is a convolution whose weight matrix sums to 1.

Lowpass filtering in the frequency domain:
High frequencies are diminished or eliminated
Individual frequency components are multiplied by a 
nonincreasing function of ω such as 1/ω = 1/√(u2+v2).



Ideal Lowpass Filter
理想低通滤波器

Fourier Domain Rep.Fourier Domain Rep. Central ProfileCentral Profile

Image size: 512x512
FD filter radius: 16
Image size: 512x512
FD filter radius: 16

Multiply by 
this, or …

Spatial RepresentationSpatial Representation

… convolve 
by this



Fourier Domain Rep.Fourier Domain Rep.

Ideal Lowpass Filter

Central ProfileCentral Profile

Image size: 512x512
FD filter radius: 8
Image size: 512x512
FD filter radius: 8

Multiply by 
this, or …

Spatial RepresentationSpatial Representation

… convolve 
by this



Power Spectrum and Phase 
of an Image Consider the 

image below:
Consider the 
image below:

Original ImageOriginal Image Power SpectrumPower Spectrum PhasePhase



Ideal LPF in FDIdeal LPF in FDOriginal ImageOriginal Image Power SpectrumPower Spectrum

Ideal Lowpass Filter

Image size: 512x512
FD filter radius: 16
Image size: 512x512
FD filter radius: 16



Original ImageOriginal ImageFiltered ImageFiltered Image Filtered Power SpectrumFiltered Power Spectrum

Ideal Lowpass Filter
Image size: 512x512
FD filter radius: 16
Image size: 512x512
FD filter radius: 16

Brenda
附注
低通滤波器起到模糊效果，但容易出现马赛克



Ideal low-pass filter (ILPF)
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(M/2,N/2): center in frequency domain. 

D0 is called the cutoff frequency(截止频率).



ringing 
and 
blurringIdeal in frequency 

domain means 
non-ideal in 
spatial domain, 
vice versa.

FT



Shape of ILPF

Spatial domain

h(x,y)

Frequency domain



Fourier transform
basis functions

Approximating a 
square wave as the 
sum of sine waves.

…… ……

Brenda
附注
傅里叶变换不能模拟出方波尖锐的角



The limiting case…

Frequency domain Spatial Domain

F(u,v)⋅H(u,v) f(x,y) ⊗ h(x,y)

H(u,v)=1 h(x,y)=
000
010
000

And vice versa.



Butterworth Lowpass Filters 
(BLPF)
Smooth transfer function, no 
sharp discontinuity, no clear 
cutoff frequency. 
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Butterworth Lowpass Filters (BLPF)
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•Notice the ringing of different orders 

n=1 n=2 n=5 n=20
h(x)

Order=1 Order=2 Order=5 Order=20



No serious ringing  
artifacts



• Smooth transfer function, 
smooth impulse response, 
no ringing

2
0

2

2
),(

),( D
vuD

evuH
−

=

Gaussian Lowpass Filters (GLPF)



Spatial
domain

Gaussian lowpass filter

Frequency
domain

GLPF



No ringing  artifacts



Examples of Lowpass Filtering



Examples of Lowpass Filtering

Original image and its FT Filtered image and its FT

Low-pass filter H(u,v)



Sharpening: Differencing / Highpass Filtering

Sharpening results from adding to the image, a 
copy of itself that has been: 

Pixel-differenced in the spatial domain:
Each pixel in the output is a difference between itself and a 
weighted average of its neighbors.
Is a convolution whose weight matrix sums to 0.

Highpass filtered in the frequency domain:
High frequencies are enhanced or amplified.
Individual frequency components are multiplied by an 
increasing function of ω such as αω = α√(u2+v2), where α is 
a constant.



Ideal Highpass Filter
理想高通滤波器

Fourier Domain Rep.Fourier Domain Rep. Spatial RepresentationSpatial Representation Central ProfileCentral Profile

Image size: 512x512
FD notch radius: 16
Image size: 512x512
FD notch radius: 16

Multiply by 
this, or …
Multiply by 
this, or …

… convolve 
by this
… convolve 
by this



Ideal HPF in FDIdeal HPF in FDOriginal ImageOriginal Image Power SpectrumPower Spectrum

Ideal Highpass Filter

Image size: 512x512
FD notch radius: 16
Image size: 512x512
FD notch radius: 16



Original ImageOriginal ImageFiltered Image*Filtered Image* Filtered Power SpectrumFiltered Power Spectrum

Ideal Highpass Filter
Image size: 512x512
FD notch radius: 16
Image size: 512x512
FD notch radius: 16



High-pass Filters
高通滤波器

Hhp(u,v)=1-Hlp(u,v)

Ideal:

Butterworth:

Gaussian:
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High-pass Filters

h(x,y)



IdealIdeal High-pass Filtering

ringing artifacts



ButterworthButterworth High-pass Filtering



GaussianGaussian High-pass Filtering



Gaussian High-pass Filtering

Original image Gaussian filter H(u,v)

Filtered image and its FT



Laplacian in Frequency 
Domain
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The Uncertainty Relation
不确定性关系

FTFT

space frequency

FTFT

space frequency

A small object in space 
has a large frequency 
extent and vice-versa.

A small object in space 
has a large frequency 
extent and vice-versa.
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Ideal Filters Do Not Produce 
Ideal Results

A sharp cutoff in the 
frequency domain…

A sharp cutoff in the 
frequency domain…

…causes ringing in the 
spatial domain.

…causes ringing in the 
spatial domain.

IFTIFT



Ideal Filters Do Not Produce 
Ideal Results

Ideal LPFIdeal LPF

Blurring the image above 
with an ideal lowpass filter…

Blurring the image above 
with an ideal lowpass filter…

…distorts the results with 
ringing or ghosting.

…distorts the results with 
ringing or ghosting.



Optimal Filter:  The Gaussian

The Gaussian filter optimizes the uncertainty relation. 
It provides the sharpest cutoff with the least ringing.

The Gaussian filter optimizes the uncertainty relation. 
It provides the sharpest cutoff with the least ringing.

IFTIFT



One-Dimensional Gaussian
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Two-Dimensional Gaussian
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If μ and σ are 
different for r & c…

If μ and σ are 
different for r & c…

…or if μ and σ are 
the same for r & c.

…or if μ and σ are 
the same for r & c.

r

c
R = 512, C = 512

μ = 257, σ = 64



Gaussian LPFGaussian LPF

With a gaussian lowpass 
filter, the image above …

With a gaussian lowpass 
filter, the image above …

… is blurred without ringing 
or ghosting.

… is blurred without ringing 
or ghosting.

Optimal Filter:  The Gaussian



Fourier Domain Rep.Fourier Domain Rep. Spatial RepresentationSpatial Representation Central ProfileCentral Profile

Image size: 512x512
SD filter sigma = 8
Image size: 512x512
SD filter sigma = 8

Gaussian Lowpass Filter
高斯低通滤波器

Multiply by 
this, or …
Multiply by 
this, or …

… convolve 
by this
… convolve 
by this



Fourier Domain Rep.Fourier Domain Rep. Spatial RepresentationSpatial Representation Central ProfileCentral Profile

Gaussian Lowpass Filter
Image size: 512x512
SD filter sigma = 2
Image size: 512x512
SD filter sigma = 2

Multiply by 
this, or …
Multiply by 
this, or …

… convolve 
by this
… convolve 
by this



Gaussian LPF in FDGaussian LPF in FDOriginal ImageOriginal Image Power SpectrumPower Spectrum

Image size: 512x512
SD filter sigma = 8
Image size: 512x512
SD filter sigma = 8

Gaussian Lowpass Filter



Original ImageOriginal ImageFiltered ImageFiltered Image Filtered Power SpectrumFiltered Power Spectrum

Gaussian Lowpass Filter
Image size: 512x512
SD filter sigma = 8
Image size: 512x512
SD filter sigma = 8



Original ImageOriginal ImageIdeal LPFIdeal LPF

Comparison of Ideal and 
Gaussian Lowpass Filters

Gaussian LPFGaussian LPF



Gaussian Highpass Filter
高斯高通滤波器

Fourier Domain Rep.Fourier Domain Rep. Spatial RepresentationSpatial Representation Central ProfileCentral Profile

Image size: 512x512
FD notch sigma = 8
Image size: 512x512
FD notch sigma = 8

Multiply by 
this, or …
Multiply by 
this, or …

… convolve 
by this
… convolve 
by this



Gaussian HPF in FDGaussian HPF in FDOriginal ImageOriginal Image Power SpectrumPower Spectrum

Gaussian Highpass Filter

Image size: 512x512
FD notch sigma = 8
Image size: 512x512
FD notch sigma = 8



Original ImageOriginal ImageFiltered Power SpectrumFiltered Power Spectrum

Gaussian Highpass Filter

Image size: 512x512
FD notch sigma = 8
Image size: 512x512
FD notch sigma = 8

Filtered Image*Filtered Image*



Original ImageOriginal Image Gaussian HPF*Gaussian HPF*

Comparison of Ideal and 
Gaussian Highpass Filters

*signed image; 0 
mapped to 128

*signed image; 0 
mapped to 128

Ideal HPF*Ideal HPF*



Another Highpass Filter

original imageoriginal image filter power spectrumfilter power spectrum filtered image*filtered image*

*signed image; 0 
mapped to 128

*signed image; 0 
mapped to 128



Ideal Bandpass Filter
理想带通滤波器

original imageoriginal image filter power spectrumfilter power spectrum filtered image*filtered image*

*signed image; 0 
mapped to 128

*signed image; 0 
mapped to 128



Gaussian Bandpass Filter
高斯带通滤波器

Fourier Domain Rep.Fourier Domain Rep. Spatial RepresentationSpatial Representation Central ProfileCentral Profile

Image size: 512x512
sigma = 2 - sigma = 8
Image size: 512x512
sigma = 2 - sigma = 8



Gaussian BPF in FDGaussian BPF in FDOriginal ImageOriginal Image Power SpectrumPower Spectrum

Gaussian Bandpass Filter

Image size: 512x512
sigma = 2 - sigma = 8
Image size: 512x512
sigma = 2 - sigma = 8



Original ImageOriginal ImageFiltered Image*Filtered Image* Filtered Power SpectrumFiltered Power Spectrum

Gaussian Bandpass Filter

Image size: 512x512
sigma = 2 - sigma = 8
Image size: 512x512
sigma = 2 - sigma = 8

*signed image; 0 
mapped to 128

*signed image; 0 
mapped to 128



Original ImageOriginal Image Gaussian BPF*Gaussian BPF*Ideal BPF*Ideal BPF*

Comparison of Ideal and 
Gaussian Bandpass Filters

*signed image; 0 
mapped to 128

*signed image; 0 
mapped to 128



clear all;close all;
iptsetpref('ImshowBorder','tight');
bw = imread('text.png');
imshow(bw);
a = bw(32:45,88:98);
figure, imshow(a); 
C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));
figure, imshow(C,[])
max(C(:));  %cys this call output 68
thresh = 60; % Set a threshold a little less than max.
figure, imshow(C > thresh); % highlight pixels over threshold.

DFT – Matlab
demo



Homework VII

Design your own DFT exploration experimence. 
It can be either of the following

DFT and reconstruction
DFT Real/Imagenary part, magnitude/phase
Frequency domain filtering
DFT based image analysis (Detection/Editing…)

Submit your test images, codes, experiment 
results and documents.



End of Lecture
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