
1

Image and Vision Computing
Features

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University

2

实践出真知

纸上得来终觉浅
绝知此事要躬行

——陆游《冬夜读书示子聿》
古人学问无遗力, 少壮工夫老始成。纸上得来终觉浅, 绝知此事要躬行。

3

Today’s Goals

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features

4

Today’s Questions

What is a feature?
What is an image filter?
How can we find edges?
How can we find corners?

(How can we find cars in images?)

5

What is a Feature?

Local, meaningful, detectable parts of the image

6

Features in Computer Vision

What is a feature?
Location of sudden change

Why use features?
Information content high
Invariant to change of view point,
illumination
Reduces computational burden

7

Vanishing Points (无穷远点/灭点)

8

Vanishing Line (地平线)

Local versus global

9

Vanishing Line

10

Computer Vision Algorithm

Feature 1
Feature 2

:
Feature N

Features in Computer Vision

Feature 1
Feature 2

:
Feature N

Image 1 Image 2

11

Features in computer vision

Compositing

This is your test image set

12

Features in computer vision

Mosaic

13

Where Features Are Used

Calibration(相机标定)
Image Segmentation(图像分割)
Correspondence in multiple images (对应匹配)
Object detection, recognition(检测识别)

14

What Makes For Good Features?

Invariance
View point (scale, orientation, translation)
Lighting condition
Object deformations
Partial occlusion

Other Characteristics
Uniqueness
Sufficiently many
Tuned to the task

15

Invariant Local Features
Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters

SIFT Features
SIFT = Scale Invariant Feature Transform

16

Advantages of local features

Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be
matched to a large database of objects

Quantity: many features can be generated
for even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to
wide range of differing feature types, with
each adding robustness

17

More motivation…

Feature points are used also for:
Image alignment (图像配准/对齐)
3D reconstruction(三维重构)
Motion tracking(运动跟踪)
Object recognition(目标识别)
Indexing and database retrieval(信息检索)
Robot vision(机器人视觉)
Others……

18

Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

19

We also get:Boundaries of surfaces

20

Boundaries of depths

21

Boundaries of materials properties

22

Boundaries of lighting

23

Edge Detection

Convert a 2D image into a set of curves
Extracts salient features of the scene
More compact than pixels

24

Edge Detection

How can you tell that a pixel is on an edge?

25

Edge Types

Step Edges

Roof Edge Line Edges

26

Real Edges

Noisy and Discrete!
We want an Edge Operator that produces:

Edge Magnitude

Edge Orientation

High Detection Rate and Good Localization

27

Edge Detection Continued

28

Boundary Detection – Edges

Boundaries of objects
Usually different materials/orientations,
intensity changes.

29

Edge is Where Change Occurs

Change is measured by derivative in 1D
Biggest change, derivative has
maximum magnitude
Or 2nd derivative is zero.

30

Noisy Step Edge

Gradient is high everywhere.
Must smooth before taking gradient.

31

So, 1D Edge Detection has
steps:

1. Filter out noise: convolve with
Gaussian

2. Take a derivative: convolve with
[-1 0 1]

3. Find the peak. Two issues:
Should be a local maximum.
Should be sufficiently high.

32

What is the gradient?

)0,(, k
y
I

x
I

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

Change

No Change

33

What is the gradient?

),0(, k
y
I

x
I

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

No Change

Change

34

What is the gradient?

),(, yx kk
y
I

x
I

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

Less Change

Much Change

Gradient direction is perpendicular to edge.

Gradient Magnitude measures edge strength.

126

Detecting Discontinuities
n Image derivatives

n Convolve image with derivative filters

() ()
÷
ø
ö

ç
è
æ -+

=
¶
¶

® e
e

e

xfxf
x
f

0
lim () ()

x
xfxf

x
f n

D
-

»
¶
¶ +1

Backward difference

Forward difference

Central difference

[-1 1]

[1 -1]

[-1 0 1]

127

Derivative in Two-Dimensions
n Definition

n Approximation

n Convolution kernels

() () ()
÷
ø
ö

ç
è
æ -+

=
¶

¶
® e

e
e

yxfyxf
x
yxf ,,lim,

0

() () ()
÷
ø
ö

ç
è
æ -+

=
¶

¶
® e

e
e

yxfyxf
y
yxf ,,lim,

0

() () ()
x

yxfyxf
x
yxf mnmn

D
-

»
¶

¶ + ,,, 1 () () ()
x

yxfyxf
y
yxf mnmn

D
-

»
¶

¶ + ,,, 1

[]11 -=xf ú
û

ù
ê
ë

é
-

=
1
1

yf

35

Discrete Edge Operators
How can we differentiate a digital image?

Finite difference approximations:

1, +jiI 1,1 ++ jiI

jiI , jiI ,1+

Gradients:

() ()()jijijiji IIII
x
I

,,11,1,12
1

−+−≈
∂
∂

++++ε

() ()()jijijiji IIII
y
I

,1,,11,12
1

−+−≈
∂
∂

++++ε

ε

1− 1

1− 1ε2
1

≈
∂
∂
x
I 1 1

1− 1−ε2
1

≈
∂
∂
y
I

Convolution (cross‐correlation) masks :

36

Discrete Edge Operators
1, +jiI 1,1 ++ jiI

jiI , jiI ,1+

1,1 +− jiI

jiI ,1−

1,1 −− jiI 1, −jiI 1,1 −+ jiI

2nd order partial derivatives:

()jijiji III
x
I

,1,,122

2

21
+− +−≈

∂
∂

ε

()1,,1,22

2

21
+− +−≈

∂
∂

jijiji III
y
I

ε
Laplacian :

2

2

2

2
2

y
I

x
II

∂
∂

+
∂
∂

=∇

2
2 1

ε
≈∇ I

Convolution (cross‐correlation) masks :

1 0

4− 1

0

1

0 1 0

or 26
1
ε

4 1

20− 4

1

4

1 4 1

37

Better approximations of the gradients exist
The Sobel operators below are very commonly used

The Sobel Operator

The standard defn. of the Sobel operator omits the 1/8 term
doesn’t make a difference for edge detection
the 1/8 term is needed to get the right gradient value

10-1
20-2
10-1

-1-2-1
000
121

38

Effects of noise

Where is the edge?

Consider a single row or column of the image
Plotting intensity as a function of position gives a
signal

39Where is the edge?

Solution: smooth first

Look for peaks in

40

Derivative theorem of convolution

This saves us one operation:

41

Laplacian of Gaussian

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

Consider

() fh
x

fh
x

∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=∗
∂
∂

2

2

2

2

Laplacian of Gaussian

42

Laplacian of Gaussian

Gaussian derivative of Gaussian

2D edge detection filters

is the Laplacian operator:

43

Prewitt and Sobel edge detectors
Compute derivatives

In x and y directions

Find gradient magnitude
Threshold gradient magnitude

Difference between Prewitt and Sobel is
the derivative filters

Edge Detection

44

Prewitt Edge Detector

Prewitt’s
edges in x
direction ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
101
101

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−− 111
000
111Prewitt’s

edges in y
direction

xI

yI

45

Sobel Edge Detector

Sobel’s
edges in x
direction ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
202
101

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−− 121
000
121Sobel’s

edges in y
direction

xI

yI

131

Prewitt Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x

ú
ú
ú

û

ù

ê
ê
ê

ë

é

11
11
11

[]11 -

ú
û

ù
ê
ë

é
-1
1

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-
-

101
101
101

ú
ú
ú

û

ù

ê
ê
ê

ë

é

--- 111
000
111

ú
û

ù
ê
ë

é
111
111

and

image blurred edges in yaverage
smoothing in y

derivative
filtering in y

and

132

Sobel Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x

ú
ú
ú

û

ù

ê
ê
ê

ë

é

11
22
11

[]11 -

ú
û

ù
ê
ë

é
-1
1

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-
-

101
202
101

ú
ú
ú

û

ù

ê
ê
ê

ë

é

--- 121
000
121

ú
û

ù
ê
ë

é
121
121

and

image blurred edges in yaverage
smoothing in y

derivative
filtering in y

and

133

Sobel Edge Detector

Image I

ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-
-

101
202
101

ú
ú
ú

û

ù

ê
ê
ê

ë

é

--- 121
000
121

*

*

I
dx
d

I
dy
d

22

÷÷
ø

ö
çç
è

æ
+÷

ø
ö

ç
è
æ I

dy
dI

dx
d

Threshold Edges

148

Edge Finding:
Matlab Demo

im = imread(‘football.jpg');
image(im);
figure(2);
bw = double(rgb2gray(im));

[dx,dy] = gradient(bw);
gradmag = sqrt(dx.^2 + dy.^2);
image(gradmag);

149

Image Smoothing With Gaussian

figure(3);
sigma = 3;
width = 3 * sigma;
support = -width : width;
gauss2D = exp(- (support / sigma).^2 / 2);
gauss2D = gauss2D / sum(gauss2D);
smooth = conv2(bw, gauss2D, 'same');
image(smooth);
colormap(gray(255));
gauss3D = gauss2D' * gauss2D;
tic ; smooth = conv2(bw,gauss3D, 'same'); toc

150

Edge Detection With Smoothed Images

figure(4);
[dx,dy] = gradient(smooth);
gradmag = sqrt(dx.^2 + dy.^2);
gmax = max(max(gradmag));
imshow(gradmag);
colormap(gray(gmax));

151

Displaying the Edge Normal

figure(5);
hold on;
image(smooth);
colormap(gray(255));
[m,n] = size(gradmag);

edges = (gradmag > 0.3 * gmax);
inds = find(edges);
[posx,posy] = meshgrid(1:n,1:m); posx2=posx(inds); posy2=posy(inds);
gm2= gradmag(inds);
sintheta = dx(inds) ./ gm2;
costheta = - dy(inds) ./ gm2;
quiver(posx2,posy2, gm2 .* sintheta / 10, -gm2 .* costheta / 10,0);
hold off;

152

Sobel Operator
-1 -2 -1
0 0 0
1 2 1

-1 0 1
-2 0 2
-1 0 1

S1= S2 =

Edge Magnitude =

Edge Direction =

S1 + S1
2 2

tan-1
S1

S2

153

Sobel Edge Detector

figure(6)
edge(bw, 'sobel')

46

Edge detection
- Matlab demo

I = imread('circuit.tif');
imshow(I);
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
Figure;
imshow(BW1);
Figure;
imshow(BW2);

Original image

Prewitt filter

Canny filter

47

Edge detection
- Matlab demo

I = imread('coins.png');
imshow(I);
BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
Figure;
imshow(BW1);
Figure;
imshow(BW2);

Original image

Sobel filter

Canny filter

48

Features in Matlab

edge(im,’prewitt’) - (almost) linear
edge(im,’sobel’) - (almost) linear
edge(im,’canny’) - not local, no closed form

49

Sobel Operator
-1 -2 -1
0 0 0
1 2 1

-1 0 1
-2 0 2
-1 0 1

S1= S2 =

Edge Magnitude =

Edge Direction =

S1 + S1
2 2

tan-1
S1

S2

50

Sobel filter

edge(im,’sobel’)

51

Today’s Goals

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features

52

Canny Edge Detector

J. Canny, "A computational approach to edge
detection, " IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8, pp.
679--698, 1986

Source code:
ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src

ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src

53

Canny Edge Detector

edge(im,’canny’)

54

Comparison

CannySobel

55

Optimal Edge Detection: Canny

Assume:
Linear filtering
Additive iid Gaussian noise

Edge detector should have:
Good Detection. Filter responds to edge,
not noise.
Good Localization: detected edge near true
edge.
Single Response: one per edge.

56

Optimal Edge Detection: Canny
(continued)

Optimal Detector is approximately
Derivative of Gaussian.
Detection/Localization trade-off

More smoothing improves detection
And hurts localization.

This is what you might guess from
(detect change) + (remove noise)

57

Canny Edge Detector

Criterion 1: Good Detection: The optimal
detector must minimize the probability of
false positives as well as false negatives.

Criterion 2: Good Localization: The edges
detected must be as close as possible to the
true edges.

Single Response Constraint: The detector
must return one point only for each edge
point.

58

Canny Edge Detector Steps

1. Smooth image with Gaussian filter
2. Compute derivative of filtered image
3. Find magnitude and orientation of

gradient
4. Apply “Non-maximum Suppression”
5. Apply “Hysteresis Threshold”

59

Canny Edge Detector
First Two Steps

1. Filter out noise
Use a 2D Gaussian Filter.

2. Take a derivative
Compute the magnitude of the gradient:

GIJ ⊗=

22

Gradient theis ,),(

yx

yx

JJJ

y
J

x
JJJJ

+=∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

==∇

60

Canny Edge Detector
First Two Steps

Smoothing

Derivative

IyxgyxgIS ∗=∗=),(),(2

22

2

2
1),(σ

σπ

yx

eyxg
+

−
=

() () IgIgS ∗∇=∗∇=∇

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

=∇
y

x

g
g

y
g
x
g

g
I

g
g

S
y

x ∗⎥
⎦

⎤
⎢
⎣

⎡
=∇ ⎥

⎦

⎤
⎢
⎣

⎡
∗
∗

=
Ig
Ig

y

x

Homework

61

Canny Edge Detector
Derivative of Gaussian

),(yxg

),(yxgx

),(yxg y

62

Smoothing and Differentiation

Need two derivatives, in x and y direction.
We can use a derivative of Gaussian filter

because differentiation is convolution, and
convolution is associative

63

Canny Edge Detector
First Two Steps

xS

yS

I

64

Canny Edge Detector
Third Step

Gradient magnitude and gradient direction

x

y

yx

yx

S
S

SS

SS

1

22

tan

)(

),(

−==

+=

θdirection

magnitude

 VectorGradient

image gradient magnitude

65

Finding the Peak

1) The gradient magnitude is large along thick
trail; how do we identify the significant
points?

2) How do we link the relevant points up into
curves?

66

Canny Edge Detector
Fourth Step

Non maximum suppression

We wish to mark points along the curve where the magnitude is biggest. We can
do this by looking for a maximum along a slice normal to the curve (non-maximum
suppression). These points should form a curve. There are then two algorithmic
issues: at which point is the maximum, and where is the next one?

67

Non-Maximum Supression

Non-maximum suppression:
Select the single maximum point across the width of an edge.

68

Non-maximum
suppression

At q, we have a
maximum if the
value is larger
than those at
both p and at r.
Interpolate to
get these
values.

(Forsyth & Ponce)

69

Predicting
the next
edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
r or s).

(Forsyth & Ponce)

70

Canny Edge Detector
Non-Maximum Suppression

Suppress the pixels in |∇S| which are
not local maximum

()yx ′′,

()yx,

()yx ′′′′ ,

()
() () ()

() ()
⎪
⎩

⎪
⎨

⎧

′′′′Δ>Δ

′′Δ>Δ∇

=

otherwise

 if

0

,,&

,,,

, yxSyxS

yxSyxSyxS

yxM

x’ and x’’ are the neighbors of x along
normal direction to an edge

71

Canny Edge Detector
Quantization of Normal Directions

41420tan41422

41422|tan|

41422tan41420

41420tan41420

.θ.

.θ

.θ.

.θ.-

−≤<

≥

<<

≤<

-:3

:2

1:

:0
:onsQuantizati

x

y

S
S

θ =tan

0

1
2

3

72

Canny Edge Detector
Non-Maximum Suppression

22
yx SSS +=Δ M

25=≥ ThresholdM
ionvisualizat For

73

Hysteresis(滞变)

Check that maximum value of gradient
value is sufficiently large

drop-outs? use hysteresis
use a high threshold to start edge curves and a
low threshold to continue them.

74

Edge Hysteresis

Hysteresis: A lag or momentum factor
Idea: Maintain two thresholds khigh and klow

Use khigh to find strong edges to start edge
chain
Use klow to find weak edges which continue
edge chain

Typical ratio of thresholds is roughly
khigh / klow = 2

75

Canny Edge Detector
Hysteresis Thresholding

If the gradient at a pixel is
above “High”, declare it an ‘edge pixel’
below “Low”, declare it a “non-edge-pixel”
between “low” and “high”

Consider its neighbors iteratively then declare it an
“edge pixel” if it is connected to an ‘edge pixel’
directly or via pixels between “low” and “high”.

76

Canny Edge Detector
Hysteresis Thresholding

Connectedness

x

4 connected

x

8 connected

x

6 connected

77

Canny Edge Detector
Hysteresis Thresholding

High

low

Gradient
magnitude

78

Canny Edge Detector
Hysteresis Thresholding

Scan the image from left to right, top-
bottom.

The gradient magnitude at a pixel is above a
high threshold declare that as an edge point
Then recursively consider the neighbors of
this pixel.

If the gradient magnitude is above the low
threshold declare that as an edge pixel.

79

High

low

Gradient
magnitude

Canny Edge Detector
Hysteresis Thresholding

80

Canny Edge Detector
Hysteresis Thresholding

M 25≥M
regular

15
35

=
=

Hysteresis

Low
High

81

Summary: Canny Edge Detector

Steps:
1. Apply derivative of Gaussian
2. Non-maximum suppression

Thin multi-pixel wide “ridges” down to single
pixel width

3. Linking and thresholding
Low, high edge-strength thresholds
Accept all edges over low threshold that are
connected to edge over high threshold

82

Summary: Canny Edge Operator

Smooth image I with 2D Gaussian:

Find local edge normal directions for each pixel

Compute edge magnitudes

Find the location of the edges by finding zero-crossings
along the edge normal directions (non-maximum
suppression)

Threshold edges in the image with hysteresis to eliminate
spurious responses

()
()IG

IG
∗∇
∗∇

=n

IG ∗

() 02

2

=
∂

∗∂
n

IG

()IG ∗∇

Read Canny’s original paper for further details

83

Why is Canny so Dominant

Still widely used after 20 years.
1. Theory is nice (but end result same).
2. Details good (magnitude of gradient).
3. Hysteresis an important heuristic.
4. Code was distributed.
5. Perhaps this is about all you can do

with linear filtering.

84

Demo of Edge Detection

85

Canny Edge Detection (Example)

courtesy of G. Loy

gap is gone

Original
image

Strong
edges

only

Strong +
connected
weak edges

Weak
edges

86

Canny Edge Detection (Example)

Using Matlab with default thresholds

87

Bridge Example

edge(im,’canny’)

88

The Canny Edge Detector

original image (Lena)

89

The Canny Edge Detector

magnitude of the gradient

90

The Canny Edge Detector

After non‐maximum suppression and
thresholding with hysterisis

91

Canny Edge Operator

Canny with Canny with original

The choice of depends on desired behavior
large detects large scale edges
small detects fine features

92

93

fine scale
high
threshold

94

coarse
scale,
high
threshold

95

coarse
scale
low
threshold

97

Corner Effects

98

Today’s Goals (Break)

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features

99

Corners(Start)

Why are they important?

100

Corners

Why are they important?

101

Corners

Why are they important?

102

Corners

Why are they important?

103

Corners

Why are they important?

104

Corners

Why are they important?

105

Corners

Why are they important?

106

Corners

Why are they important?

107

Corners

Why are they important?

108

Corners

Why are they important?

109

Corners(End)

Why are they important?

110

Corners

Why are they important?

111

Corners

Why are they important?

112

Corners

Why are they important?

113

Corners

Why are they important?

114

Corners

Why are they important?

115

Corners

Why are they important?

116

Corners

Why are they important?

117

Corners

Why are they important?

118

Corners

Why are they important?

119

Corners(End)

Why are they important?

120

Corners

Why are they important?

121

Corners contain more edges
than lines.

A point on a line is hard to match.

Which one is the correct correspondence?

122

Corners contain more edges
than lines.

A corner is easier

123

Finding Corners

Edge detectors perform poorly at corners.

Corners provide repeatable points for matching,
so are worth detecting.

Idea:

• Right at a corner, gradient is ill
defined.

• Near a corner, gradient has two or
more different values.

124

Edge Detectors Tend to Fail at
Corners

?

?

=

=

y

x

I

I

125

Formula for Finding Corners

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

2

yyx

yxx

III
III

C

Look at the second-moment matrix:

Sum over a small region,
the hypothetical corner

Gradient with respect to x,
times gradient with respect to y

Matrix is symmetric WHY THIS?

126

Simple Case

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑∑
∑∑

2

1
2

2

0
0
λ

λ

yyx

yxx

III
III

C

First, consider case where:

This means dominant gradient directions align with
x or y axis

If either λ is close to 0, then this is not a corner, so
look for locations where both are large.

Slide credit: David Jacobs

127

General Case

Rotate

Shear

128

General Case

It can be shown that since C is rotationally
symmetric:

RRC ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

So every case is like a rotated version of the
standard one on last slide.

Slide credit: David Jacobs

129

So, to detect corners

Filter image.
Compute magnitude of the gradient
everywhere.
Construct C in a window around the
target pixel.
Use Linear Algebra to find λ1 and λ2.
If they are both big, we have a corner.

130

Gradient Orientation

Closeup

131

Corner Detection

Corners are detected
where the product of the
ellipse axis lengths
reaches a local maximum.

132

Harris Corners

Originally developed as features for motion tracking
Greatly reduces amount of computation compared to
tracking every pixel
Translation and rotation invariant (but not scale
invariant)

133

Harris Corner:
Matlab code

% Harris Corner detector - by Kashif Shahzad
sigma=2; thresh=0.1; sze=11; disp=0;eps=0.0;
dy = [-1 0 1; -1 0 1; -1 0 1]; % Derivative masks
dx = dy'; %dx is the transpose matrix of dy
% Ix and Iy are the horizontal and vertical edges of image
I = imread('rice.png');
imshow(I);
title('\bf Original image');%use bold font for the title
bw=double(I);%convert uint8 to double
Ix = conv2(bw, dx, 'same'); % Calculating the gradient of the image
Iy = conv2(bw, dy, 'same'); %return a matrix the sane size as bw
g = fspecial('gaussian',max(1,fix(6*sigma)), sigma); %define Gaussian filter
Ix2 = conv2(Ix.^2, g, 'same'); %Smoothed squared image derivatives
Iy2 = conv2(Iy.^2, g, 'same');
Ixy = conv2(Ix.*Iy, g, 'same');
cornerness = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps); %flexible formulations
mx = ordfilt2(cornerness,sze^2,ones(sze)); % Grey-scale dilate
cornerness = (cornerness==mx)&(cornerness>thresh); % Find maxima
[rws,cols] = find(cornerness); % Find row,col coords.
figure;imshow(bw,[0 255]);
hold on;
p=[cols rws];
plot(p(:,1),p(:,2),'or'); % display corners as red circles
title('\bf Harris Corners');

134

Example (σ=0.1)

135

Example (σ=0.01)

136

Example (σ=0.001)

137

Reading: Matching with Invariant
Features (www.cs.washington.edu, computer vision course)

http://www.cs.washington.edu/

138

Harris corner detector

C.Harris, M.Stephens. “A Combined
Corner and Edge Detector”. 1988

139

The Basic Idea

We should easily recognize the point by
looking through a small window
Shifting a window in any direction should
give a large change in intensity

140

Harris Detector: Basic Idea

“flat” region:
no change in
all directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions

141

Harris Detector: Mathematics

[]2

,

(,) (,) (,) (,)
x y

E u v w x y I x u y v I x y= + + −∑

Change of intensity for the shift [u,v]:

IntensityShifted
intensity

Window
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

142

Harris Detector: Mathematics

[](,) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

For small shifts [u,v] we have a bilinear approximation:

2

2
,

(,) x x y

x y x y y

I I I
M w x y

I I I
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

where M is a 2×2 matrix computed from image derivatives:

143

Harris Detector: Mathematics

[](,) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

direction of the
slowest change

direction of the
fastest change

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const

Why? Optional assignment

144

Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all
directions

λ1 and λ2 are small;
E is almost constant
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of
image points using
eigenvalues of M:

145

Harris Detector: Mathematics
Measure of corner response:

()2det traceR M k M= −

1 2

1 2

det
trace

M
M

λ λ
λ λ

=
= +

(k – empirical constant, k = 0.04-0.06)

146

Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge”

“Edge”

“Flat”

R > 0

R < 0

R < 0|R| small

• R depends only on
eigenvalues of M

• R is large for a corner

• R is negative with large
magnitude for an edge

• |R| is small for a flat
region

147

Harris Detector

The Algorithm:
Find points with large corner response
function R (R > threshold)
Take the points of local maxima of R

148

Harris Detector: Workflow

149

Harris Detector: Workflow
Compute corner response R

150

Harris Detector: Workflow
Find points with large corner response: R>threshold

151

Harris Detector: Workflow
Take only the points of local maxima of R

152

Harris Detector: Workflow

153

Harris Detector: Summary
Average intensity change in direction [u,v] can be
expressed as a bilinear form:

Describe a point in terms of eigenvalues of M:
measure of corner response

A good (corner) point should have a large intensity
change in all directions, i.e. R should be large
positive

[](,) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

()2
1 2 1 2R kλ λ λ λ= − +

154

Harris Detector: Some
Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation

155

Harris Detector: Some
Properties

Partial invariance to affine intensity change

 Only derivatives are used =>
invariance to intensity shift: I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

156

Harris Detector: Some
Properties

But: non-invariant to image scale!

All points will be
classified as edges

Corner !

157

Models of Image Change
Geometry

Rotation
Similarity (rotation + uniform scale)

Affine (scale dependent on direction)
valid for: orthographic camera, locally
planar object

Photometry
Affine intensity change (I → a I + b)

158

Scale Invariant Detection
Consider regions (e.g. circles) of different
sizes around a point
Regions of corresponding sizes will look the
same in both images

159

Scale Invariant Detection
The problem: how do we choose corresponding
circles independently in each image?

160

Today’s Goals

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features

161

Problem: Features for Recognition
Want to find … in here

162

Correlation(相关)

How do we locate the template in the image?
Minimize

() () ()[]∑∑ −−−=
m n

jnimtnmfjiE 2,,,

= f 2 m,n()+ t 2 m − i,n − j()− 2 f m,n()t m − i,n − j()⎡⎣ ⎤⎦
n

∑
m
∑

Maximize
() () ()∑∑ −−=

m n
tf nmfjnimtjiR ,,, Cross‐correlation

template

163

Cauchy inequality (柯西不等式)

Correlation (相关)

cabcabcba ++≥++ 222

222222 444 cbacba ++≥++

R{(a,b,c), (a,b,c)}> R{(a,b,c), (b,c,a)}

R{(a,b,c), (4a,4b,4c)}> R{(a,b,c), (a,b,c)} ?

164

Cross-correlation (互相关)

() () ()∑∑ −−=
m n

tf nmfjnimtjiR ,,, ftRtf ⊗=

Note: tfft ⊗≠⊗

ffRff ⊗= Auto‐correlation

() () ()ARBRCR tftftf >> We need to be the maximum! ()ARtf

A B C
f

t

Problem:

165

Cauchy inequality (柯西不等式)

Correlation

Corr(A,B)=dot(A,B)/sqrt(|A||B|)

Corr{(a,b,c), (4a,4b,4c)}= Corr{(a,b,c), (a,b,c)}=1.0

166

Normalized Correlation
Account for energy differences

()
() ()

() ()
2

1

2
2

1

2 ,,

,,
,

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

∑∑∑∑

∑∑

m nm n

m n
tf

nmfinimt

nmfjnimt
jiN

⊗ =

167

onion = imread('onion.png');
peppers = imread('peppers.png');
imshow(onion);
figure, imshow(peppers);
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2))；(ypeak-size(sub_onion,1))];
rect_offset = [(rect_peppers(1)-rect_onion(1))；(rect_peppers(2)-rect_onion(2))];
offset = corr_offset + rect_offset;
xoffset = offset(1);
yoffset = offset(2);
xbegin = round(xoffset+1);
xend = round(xoffset+ size(onion,2));
ybegin = round(yoffset+1);
yend = round(yoffset+size(onion,1));
extracted_onion = peppers(ybegin:yend,xbegin:xend,:);
recovered_onion = uint8(zeros(size(peppers)));
recovered_onion(ybegin:yend,xbegin:xend,:) = onion;
[m,n,p] = size(peppers);
mask = ones(m,n);
i = find(recovered_onion(:,:,1)==0);
mask(i) = .2;
figure, imshow(peppers(:,:,1))；
hold on；
h = imshow(recovered_onion);
set(h,'AlphaData',mask);

Normalized
Correlation

168

Templates

Find an object in an image!

Want Invariance!
Scaling
Rotation
Illumination
Deformation

169

Template Convolution

170

Template Convolution

171

Convolution with Templates

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

No
No

No

Maybe
No

172

Scale Invariance: Image Pyramid

173

Templates with Image
Pyramid

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

No
Yes

No

Maybe
No

174

Templates

175

Optional Assignment—
Feature detector

Point feature detector
Line feature detector
Conic feature detector
Invariance under different cases
Feature matching/Correspondence
……

176

Today’s Goals

Canny Edge Detector
Harris Corner Detector
Hough Transform
Templates and Image Pyramid
SIFT Features

177

Appendix

178

SIFT

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

Yes
Yes

Yes

Maybe
Yes

179

Invariance to …

Scaling and rotation Viewpoint Illumination

180

SIFT Reference
Distinctive image features from scale-invariant
keypoints. David G. Lowe, International Journal of
Computer Vision, 60, 2 (2004), pp. 91-110.

SIFT = Scale Invariant Feature Transform

181

Invariant Local Features
Image content is transformed into local feature
coordinates that are invariant to translation,
rotation, scale, and other imaging parameters

SIFT Features

182

Advantages of invariant local features

Locality: features are local, so robust to
occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be
matched to a large database of objects

Quantity: many features can be generated for
even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide
range of differing feature types, with each adding
robustness

183

SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max,

for may different scales; non-maximum suppression, find local
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function.
Compute center with sub-pixel accuracy by setting first derivative
to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to
achieve scale invariance, by finding the strongest second
derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of
the local image region in a 4x4 pixel region. Do this for 4x4
regions of that size. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera
saturation.

184

SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max,

for may different scales; non-maximum suppression, find local
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function.
Compute center with sub-pixel accuracy by setting first
derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to
achieve scale invariance, by finding the strongest second
derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of
the local image region in a 4x4 pixel region. Do this for 4x4
regions of that size. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera
saturation.

185

Finding “Keypoints” (Corners)

Idea: Find Corners, but scale invariance

Approach:
Run linear filter (diff of Gaussians)
At different resolutions of image
pyramid

186

Difference of Gaussians

Minus

Equals

187

Difference of Gaussians

surf(fspecial('gaussian',40,4))
surf(fspecial('gaussian',40,8))
surf(fspecial('gaussian',40,8) - fspecial('gaussian',40,4))

188

Find Corners with DiffOfGauss
im =imread('bridge.jpg');
bw = double(im(:,:,1)) / 256;

for i = 1 : 10
gaussD = fspecial('gaussian',40,2*i) -

fspecial('gaussian',40,i);
res = abs(conv2(bw, gaussD, 'same'));
res = res / max(max(res));
imshow(res) ; title(['\bf i = ' num2str(i)]); drawnow

end

189

Gaussian Kernel Size i=1

190

Gaussian Kernel Size i=2

191

Gaussian Kernel Size i=3

192

Gaussian Kernel Size i=4

193

Gaussian Kernel Size i=5

194

Gaussian Kernel Size i=6

195

Gaussian Kernel Size i=7

196

Gaussian Kernel Size i=8

197

Gaussian Kernel Size i=9

198

Gaussian Kernel Size i=10

199

Key point localization

Detect maxima and
minima of difference-of-
Gaussian in scale space

Blur

Res ample

Subtra ct

200

Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 above threshold

201

SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max,

for may different scales; non-maximum suppression, find local
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function.
Compute center with sub-pixel accuracy by setting first derivative
to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to
achieve scale invariance, by finding the strongest second
derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of
the local image region in a 4x4 pixel region. Do this for 4x4
regions of that size. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera
saturation.

202

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures
(Harris approach)

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures

203

SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max,

for may different scales; non-maximum suppression, find local
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function.
Compute center with sub-pixel accuracy by setting first
derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to
achieve scale invariance, by finding the strongest second
derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of
the local image region in a 4x4 pixel region. Do this for 4x4
regions of that size. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera
saturation.

204

Select canonical orientation

Create histogram of local
gradient directions
computed at selected scale
Assign canonical
orientation at peak of
smoothed histogram
Each key specifies stable
2D coordinates (x, y, scale,
orientation)

0 2π

205

SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max,

for may different scales; non-maximum suppression, find local
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function.
Compute center with sub-pixel accuracy by setting first
derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to
achieve scale invariance, by finding the strongest second
derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of
the local image region in a 4x4 pixel region. Do this for 4x4
regions of that size. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera
saturation.

206

SIFT vector formation
Thresholded image gradients are sampled over 16x16
array of locations in scale space
Create array of orientation histograms
8 orientations x 4x4 histogram array = 128 dimensions

207

Nearest-neighbor matching to
feature database

Hypotheses are generated by approximate
nearest neighbor matching of each feature to
vectors in the database

SIFT use best-bin-first (Beis & Lowe, 97)
modification to k-d tree algorithm
Use heap data structure to identify bins in order
by their distance from query point

Result: Can give speedup by factor of 1000 while
finding nearest neighbor (of interest) 95% of the
time

208

3D Object Recognition

Extract outlines
with background
subtraction

209

3D Object Recognition

Only 3 keys are needed
for recognition, so
extra keys provide
robustness
Affine model is no
longer as accurate

210

Recognition under occlusion

211

Test of illumination
invariance

Same image under differing illumination

273 keys verified in final match

212

Examples of view interpolation

213

Location recognition

214

SIFT

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

Yes
Yes

Yes

Maybe
Yes

	Image and Vision Computing�Features
	实践出真知
	Today’s Goals
	Today’s Questions
	What is a Feature?
	Features in Computer Vision
	Vanishing Points (无穷远点/灭点)
	Vanishing Line (地平线)
	Vanishing Line
	Features in Computer Vision
	Features in computer vision
	Where Features Are Used
	What Makes For Good Features?
	Invariant Local Features
	Advantages of local features
	More motivation…
	Origin of Edges
	We also get:Boundaries of surfaces
	Boundaries of materials properties
	Boundaries of lighting
	Edge Detection
	Edge Detection
	Edge Types
	Real Edges
	Edge Detection Continued
	Boundary Detection – Edges
	Edge is Where Change Occurs
	Noisy Step Edge
	So, 1D Edge Detection has steps:
	What is the gradient?
	What is the gradient?
	What is the gradient?
	Discrete Edge Operators
	Discrete Edge Operators
	The Sobel Operator
	Effects of noise
	Solution: smooth first
	Derivative theorem of convolution
	Laplacian of Gaussian
	2D edge detection filters
	Edge Detection
	Prewitt Edge Detector
	Sobel Edge Detector
	Edge detection �- Matlab demo
	Edge detection �- Matlab demo
	Features in Matlab
	Sobel Operator
	Sobel filter
	Today’s Goals
	Canny Edge Detector
	Canny Edge Detector
	Comparison
	Optimal Edge Detection: Canny
	Optimal Edge Detection: Canny (continued)
	Canny Edge Detector
	Canny Edge Detector Steps
	Canny Edge Detector�First Two Steps
	Canny Edge Detector�First Two Steps
	Canny Edge Detector�Derivative of Gaussian
	Smoothing and Differentiation
	Canny Edge Detector�First Two Steps
	Canny Edge Detector�Third Step
	Finding the Peak
	Canny Edge Detector�Fourth Step
	Non-Maximum Supression
	Canny Edge Detector�Non-Maximum Suppression
	Canny Edge Detector�Quantization of Normal Directions
	Canny Edge Detector�Non-Maximum Suppression
	Hysteresis(滞变)
	Edge Hysteresis
	Canny Edge Detector�Hysteresis Thresholding
	Canny Edge Detector�Hysteresis Thresholding
	Canny Edge Detector�Hysteresis Thresholding
	Canny Edge Detector�Hysteresis Thresholding
	Canny Edge Detector�Hysteresis Thresholding
	Canny Edge Detector�Hysteresis Thresholding
	Summary: Canny Edge Detector
	Summary: Canny Edge Operator
	Why is Canny so Dominant
	Canny Edge Detection (Example)
	Canny Edge Detection (Example)
	Bridge Example
	The Canny Edge Detector
	The Canny Edge Detector
	The Canny Edge Detector
	Canny Edge Operator
	Assignment Exhibition—� Fractal coding demo�					--by Gong Yiling
	Corner Effects
	Today’s Goals (Break)
	Corners(Start)
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners(End)
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners
	Corners(End)
	Corners
	Corners contain more edges than lines.
	Corners contain more edges than lines.
	Finding Corners
	Edge Detectors Tend to Fail at Corners
	Formula for Finding Corners
	Simple Case
	General Case
	General Case
	So, to detect corners
	Gradient Orientation
	Corner Detection
	Harris Corners
	Harris Corner: Matlab code
	Example (s=0.1)
	Example (s=0.01)
	Example (s=0.001)
	Reading: Matching with Invariant Features (www.cs.washington.edu, computer vision course)
	Harris corner detector
	The Basic Idea
	Harris Detector: Basic Idea
	Harris Detector: Mathematics
	Harris Detector: Mathematics
	Harris Detector: Mathematics
	Harris Detector: Mathematics
	Harris Detector: Mathematics
	Harris Detector: Mathematics
	Harris Detector
	Harris Detector: Workflow
	Harris Detector: Workflow
	Harris Detector: Workflow
	Harris Detector: Workflow
	Harris Detector: Workflow
	Harris Detector: Summary
	Harris Detector: Some Properties
	Harris Detector: Some Properties
	Harris Detector: Some Properties
	Models of Image Change
	Scale Invariant Detection
	Scale Invariant Detection
	Today’s Goals
	Problem: Features for Recognition
	Correlation(相关)
	Correlation (相关)
	Cross-correlation (互相关)
	Correlation
	Normalized Correlation
	Normalized �Correlation
	Templates
	Template Convolution
	Template Convolution
	Convolution with Templates
	Scale Invariance: Image Pyramid
	Templates with Image Pyramid
	Templates
	Optional Assignment—�	Feature detector
	Today’s Goals
	Appendix
	SIFT
	Invariance to …
	SIFT Reference
	Invariant Local Features
	Advantages of invariant local features
	SIFT On-A-Slide
	SIFT On-A-Slide
	Finding “Keypoints” (Corners)
	Difference of Gaussians
	Difference of Gaussians
	Find Corners with DiffOfGauss
	Gaussian Kernel Size i=1
	Gaussian Kernel Size i=2
	Gaussian Kernel Size i=3
	Gaussian Kernel Size i=4
	Gaussian Kernel Size i=5
	Gaussian Kernel Size i=6
	Gaussian Kernel Size i=7
	Gaussian Kernel Size i=8
	Gaussian Kernel Size i=9
	Gaussian Kernel Size i=10
	Key point localization
	Example of keypoint detection
	SIFT On-A-Slide
	Example of keypoint detection
	SIFT On-A-Slide
	Select canonical orientation
	SIFT On-A-Slide
	SIFT vector formation
	Nearest-neighbor matching to feature database
	3D Object Recognition
	3D Object Recognition
	Recognition under occlusion
	Test of illumination invariance
	Examples of view interpolation
	Location recognition
	SIFT

