
1

Image and Vision Computing
Features

Instructor: Chen Yisong
HCI & Multimedia Lab, Peking University
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实践出真知

纸上得来终觉浅
绝知此事要躬行

——陆游《冬夜读书示子聿》
古人学问无遗力, 少壮工夫老始成。纸上得来终觉浅, 绝知此事要躬行。
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Today’s Goals

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features



4

Today’s Questions

What is a feature?
What is an image filter?
How can we find edges?
How can we find corners?

(How can we find cars in images?)
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What is a Feature?

Local, meaningful, detectable parts of the image
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Features in Computer Vision

What is a feature?
Location of sudden change

Why use features?
Information content high
Invariant to change of view point, 
illumination
Reduces computational burden
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Vanishing Points (无穷远点/灭点)
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Vanishing Line (地平线)

Local versus global
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Vanishing Line
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Computer Vision Algorithm

Feature 1
Feature 2

:
Feature N

Features in Computer Vision

Feature 1
Feature 2

:
Feature N

Image 1 Image 2
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Features in computer vision

Compositing

This is your test image set
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Features in computer vision

Mosaic
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Where Features Are Used

Calibration(相机标定)
Image Segmentation(图像分割)
Correspondence in multiple images (对应匹配)
Object detection, recognition(检测识别)



14

What Makes For Good Features?

Invariance
View point (scale, orientation, translation)
Lighting condition
Object deformations
Partial occlusion

Other Characteristics
Uniqueness
Sufficiently many
Tuned to the task
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Invariant Local Features
Image content is transformed into local feature 
coordinates that are invariant to translation, 
rotation, scale, and other imaging parameters

SIFT Features
SIFT = Scale Invariant Feature Transform
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Advantages of local features

Locality: features are local, so robust to 
occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be 
matched to a large database of objects

Quantity: many features can be generated 
for even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to 
wide range of differing feature types, with 
each adding robustness
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More motivation…

Feature points are used also for:
Image alignment (图像配准/对齐)
3D reconstruction(三维重构)
Motion tracking(运动跟踪)
Object recognition(目标识别)
Indexing and database retrieval(信息检索)
Robot vision(机器人视觉)
Others……
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Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity
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We also get:Boundaries of surfaces
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Boundaries of depths
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Boundaries of materials properties
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Boundaries of lighting
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Edge Detection

Convert a 2D image into a set of curves
Extracts salient features of the scene
More compact than pixels
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Edge Detection

How can you tell that a pixel is on an edge?
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Edge Types

Step Edges

Roof Edge Line Edges
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Real Edges

Noisy and Discrete!
We want an Edge Operator that produces:

Edge Magnitude

Edge Orientation

High Detection Rate and Good Localization
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Edge Detection Continued
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Boundary Detection – Edges

Boundaries of objects
Usually different materials/orientations, 
intensity changes.
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Edge is Where Change Occurs

Change is measured by derivative in 1D
Biggest change, derivative has 
maximum magnitude
Or 2nd derivative is zero.
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Noisy Step Edge

Gradient is high everywhere.
Must smooth before taking gradient.
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So, 1D Edge Detection has 
steps:

1. Filter out noise: convolve with 
Gaussian

2. Take a derivative: convolve with 
[-1 0 1]

3. Find the peak. Two issues:
Should be a local maximum.
Should be sufficiently high.
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What is the gradient?
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What is the gradient?
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What is the gradient?
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Gradient Magnitude measures edge strength.
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Detecting Discontinuities
n Image derivatives

n Convolve image with derivative filters

( ) ( )
÷
ø
ö

ç
è
æ -+

=
¶
¶

® e
e

e

xfxf
x
f

0
lim ( ) ( )

x
xfxf

x
f n

D
-

»
¶
¶ +1

Backward difference

Forward difference

Central difference

[-1   1]

[1   -1]

[-1   0  1]



127

Derivative in Two-Dimensions
n Definition

n Approximation

n Convolution kernels

( ) ( ) ( )
÷
ø
ö

ç
è
æ -+

=
¶

¶
® e

e
e

yxfyxf
x
yxf ,,lim,

0

( ) ( ) ( )
÷
ø
ö

ç
è
æ -+

=
¶

¶
® e

e
e

yxfyxf
y
yxf ,,lim,

0

( ) ( ) ( )
x

yxfyxf
x
yxf mnmn

D
-

»
¶

¶ + ,,, 1 ( ) ( ) ( )
x

yxfyxf
y
yxf mnmn

D
-

»
¶

¶ + ,,, 1

[ ]11 -=xf ú
û

ù
ê
ë

é
-

=
1
1

yf



35

Discrete Edge Operators
How can we differentiate a digital image?

Finite difference approximations:

1, +jiI 1,1 ++ jiI

jiI , jiI ,1+

Gradients:
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Discrete Edge Operators
1, +jiI 1,1 ++ jiI

jiI , jiI ,1+
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Better approximations of the gradients exist
The Sobel operators below are very commonly used

The Sobel Operator

The standard defn. of the Sobel operator omits the 1/8 term
doesn’t make a difference for edge detection
the 1/8 term is needed to get the right gradient value
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-1-2-1
000
121
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Effects of noise

Where is the edge?

Consider a single row or column of the image
Plotting intensity as a function of position gives a 
signal



39Where is the edge?

Solution:  smooth first

Look for peaks in
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Derivative theorem of convolution

This saves us one operation:
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Laplacian of Gaussian

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

Consider  
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Laplacian of Gaussian

Gaussian derivative of Gaussian

2D edge detection filters

is the Laplacian operator:
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Prewitt and Sobel edge detectors
Compute derivatives

In x and y directions

Find gradient magnitude
Threshold gradient magnitude

Difference between Prewitt and Sobel is 
the derivative filters

Edge Detection
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Prewitt Edge Detector
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Sobel Edge Detector

Sobel’s
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Prewitt Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x
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Sobel Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x
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Sobel Edge Detector

Image I
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Edge Finding:
Matlab Demo

im = imread(‘football.jpg');
image(im);
figure(2);   
bw = double(rgb2gray(im));

[dx,dy] = gradient(bw);
gradmag = sqrt(dx.^2 + dy.^2);
image(gradmag);
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Image Smoothing With Gaussian

figure(3);
sigma = 3;
width = 3 * sigma;
support = -width : width;
gauss2D = exp( - (support / sigma).^2 / 2); 
gauss2D = gauss2D / sum(gauss2D);
smooth = conv2(bw, gauss2D, 'same');
image(smooth);
colormap(gray(255));
gauss3D = gauss2D' * gauss2D;
tic ; smooth = conv2(bw,gauss3D, 'same'); toc
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Edge Detection With Smoothed Images

figure(4);
[dx,dy] = gradient(smooth);
gradmag = sqrt(dx.^2 + dy.^2);
gmax = max(max(gradmag));
imshow(gradmag);
colormap(gray(gmax));



151

Displaying the Edge Normal

figure(5);
hold on;
image(smooth);
colormap(gray(255));
[m,n] = size(gradmag);

edges = (gradmag > 0.3 * gmax);
inds = find(edges);
[posx,posy] = meshgrid(1:n,1:m); posx2=posx(inds); posy2=posy(inds);
gm2= gradmag(inds);
sintheta = dx(inds) ./ gm2;
costheta = - dy(inds) ./ gm2;
quiver(posx2,posy2, gm2 .* sintheta / 10, -gm2 .* costheta / 10,0);
hold off;
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Sobel Operator
-1   -2   -1
0     0    0 
1     2    1

-1    0    1
-2    0    2 
-1    0    1

S1= S2 =

Edge Magnitude = 

Edge Direction = 

S1 + S1
2 2

tan-1
S1

S2
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Sobel Edge Detector

figure(6)
edge(bw, 'sobel')
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Edge detection 
- Matlab demo

I = imread('circuit.tif');
imshow(I);
BW1 = edge(I,'prewitt');
BW2 = edge(I,'canny');
Figure; 
imshow(BW1);
Figure; 
imshow(BW2);

Original image

Prewitt filter

Canny filter
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Edge detection 
- Matlab demo

I = imread('coins.png');
imshow(I);
BW1 = edge(I,'sobel');
BW2 = edge(I,'canny');
Figure;
imshow(BW1);
Figure;
imshow(BW2);

Original image

Sobel filter

Canny filter
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Features in Matlab

edge(im,’prewitt’)   - (almost) linear
edge(im,’sobel’)     - (almost) linear
edge(im,’canny’)    - not local, no closed form
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Sobel Operator
-1   -2   -1
0     0    0 
1     2    1

-1    0    1
-2    0    2 
-1    0    1

S1= S2 =

Edge Magnitude = 

Edge Direction = 

S1 + S1
2 2

tan-1
S1

S2
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Sobel filter

edge(im,’sobel’)
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Today’s Goals

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features
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Canny Edge Detector

J. Canny, "A computational approach to edge 
detection, " IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 8, pp. 
679--698, 1986

Source code:
ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src

ftp://figment.csee.usf.edu/pub/Edge_Comparison/source_code/canny.src
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Canny Edge Detector

edge(im,’canny’)
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Comparison

CannySobel
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Optimal Edge Detection: Canny

Assume: 
Linear filtering
Additive iid Gaussian noise 

Edge detector should have:
Good Detection.  Filter responds to edge, 
not noise.
Good Localization: detected edge near true 
edge.
Single Response: one per edge.
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Optimal Edge Detection: Canny 
(continued)

Optimal Detector is approximately 
Derivative of Gaussian.
Detection/Localization trade-off

More smoothing improves detection
And hurts localization.

This is what you might guess from 
(detect change) + (remove noise)
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Canny Edge Detector

Criterion 1: Good Detection: The optimal 
detector must minimize the probability of 
false positives as well as false negatives.

Criterion 2: Good Localization: The edges 
detected must be as close as possible to the 
true edges.

Single Response Constraint: The detector 
must return one point only for each edge 
point.



58

Canny Edge Detector Steps

1. Smooth image with Gaussian filter
2. Compute derivative of filtered image
3. Find magnitude and orientation of 

gradient
4. Apply “Non-maximum Suppression”
5. Apply “Hysteresis Threshold”
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Canny Edge Detector
First Two Steps

1. Filter out noise
Use a 2D Gaussian Filter.

2. Take a derivative
Compute the magnitude of the gradient:
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Canny Edge Detector
First Two Steps

Smoothing

Derivative
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Canny Edge Detector
Derivative of Gaussian
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Smoothing and Differentiation

Need two derivatives, in x and y direction. 
We can use a derivative of Gaussian filter

because differentiation is convolution, and 
convolution is associative
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Canny Edge Detector
First Two Steps
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Canny Edge Detector
Third Step

Gradient magnitude and gradient direction
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Finding the Peak

1) The gradient magnitude is large along thick 
trail; how do we identify the significant 
points?

2) How do we link the relevant points up into 
curves?
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Canny Edge Detector
Fourth Step

Non maximum suppression

We wish to mark points along the curve where the magnitude is biggest. We can 
do this by looking for a maximum along a slice normal to the curve (non-maximum 
suppression).  These points should form a curve.  There are then two algorithmic 
issues: at which point is the maximum, and where is the next one?
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Non-Maximum Supression

Non-maximum suppression:
Select the single maximum point across the width of an edge.
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Non-maximum
suppression

At q, we have a 
maximum if the 
value is larger 
than those at 
both p and at r. 
Interpolate to 
get these 
values.

(Forsyth & Ponce)



69

Predicting
the next
edge point

Assume the 
marked point is an 
edge point.  Then 
we construct the 
tangent to the edge 
curve (which is 
normal to the 
gradient at that 
point) and use this 
to predict the next 
points (here either 
r or s). 

(Forsyth & Ponce)
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Canny Edge Detector
Non-Maximum Suppression

Suppress the pixels in |∇S| which are 
not local maximum

( )yx ′′,

( )yx,

( )yx ′′′′ ,

( )
( ) ( ) ( )

( ) ( )
⎪
⎩

⎪
⎨

⎧

′′′′Δ>Δ

′′Δ>Δ∇

=

otherwise

 if

0

,,&

,,,

, yxSyxS

yxSyxSyxS

yxM

x’ and x’’ are the neighbors of x along 
normal direction to an edge



71

Canny Edge Detector
Quantization of Normal Directions
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Canny Edge Detector
Non-Maximum Suppression
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Hysteresis(滞变)  

Check that maximum value of gradient 
value is sufficiently large

drop-outs?  use hysteresis
use a high threshold to start edge curves and a 
low threshold to continue them.
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Edge Hysteresis

Hysteresis: A lag or momentum factor
Idea: Maintain two thresholds khigh and klow

Use khigh to find strong edges to start edge 
chain
Use klow to find weak edges which continue 
edge chain

Typical ratio of thresholds is roughly
khigh / klow = 2
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Canny Edge Detector
Hysteresis Thresholding

If the gradient at a pixel is 
above “High”, declare it an ‘edge pixel’
below “Low”, declare it a “non-edge-pixel”
between “low” and “high”

Consider its neighbors iteratively then declare it an 
“edge pixel” if it is connected to an ‘edge pixel’
directly or via pixels between “low” and “high”.
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Canny Edge Detector
Hysteresis Thresholding

Connectedness

x

4 connected

x

8 connected

x

6 connected
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Canny Edge Detector
Hysteresis Thresholding

High

low

Gradient 
magnitude
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Canny Edge Detector
Hysteresis Thresholding

Scan the image from left to right, top-
bottom.

The gradient magnitude at a pixel is above a 
high threshold declare that as an edge point
Then recursively consider the neighbors of 
this pixel.

If the gradient magnitude is above the low 
threshold declare that as an edge pixel.
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High

low

Gradient 
magnitude

Canny Edge Detector
Hysteresis Thresholding
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Canny Edge Detector
Hysteresis Thresholding
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Summary: Canny Edge  Detector

Steps:
1. Apply derivative of Gaussian
2. Non-maximum suppression

Thin multi-pixel wide “ridges” down to single 
pixel width

3. Linking and thresholding
Low, high edge-strength thresholds
Accept all edges over low threshold that are 
connected to edge over high threshold
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Summary: Canny Edge Operator

Smooth image I with 2D Gaussian:

Find local edge normal directions for each pixel

Compute edge magnitudes

Find the location of the edges by finding zero-crossings 
along the edge normal directions (non-maximum 
suppression)

Threshold edges in the image with hysteresis to eliminate 
spurious responses
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Read Canny’s original paper for further details
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Why is Canny so Dominant

Still widely used after 20 years.
1. Theory is nice (but end result same).
2. Details good (magnitude of gradient).
3. Hysteresis an important heuristic.
4. Code was distributed.
5. Perhaps this is about all you can do 

with linear filtering.
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Demo of Edge Detection
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Canny Edge Detection (Example)

courtesy of G. Loy

gap is gone

Original
image

Strong
edges

only

Strong +
connected
weak edges

Weak
edges
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Canny Edge Detection (Example)

Using Matlab with default thresholds
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Bridge Example

edge(im,’canny’)
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The Canny Edge Detector

original image (Lena)
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The Canny Edge Detector

magnitude of the gradient
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The Canny Edge Detector

After non‐maximum suppression and
thresholding with hysterisis
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Canny Edge Operator

Canny with  Canny with original 

The choice of     depends on desired behavior
large     detects large scale edges
small     detects fine features
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fine scale
high 
threshold
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coarse 
scale,
high 
threshold
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coarse
scale
low
threshold



97

Corner Effects
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Today’s Goals (Break)

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features
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Corners(Start)

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?



107

Corners

Why are they important?
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Corners

Why are they important?
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Corners(End)

Why are they important?



110

Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners

Why are they important?
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Corners(End)

Why are they important?
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Corners

Why are they important?
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Corners contain more edges 
than lines.

A point on a line is hard to match.

Which one is the correct correspondence?
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Corners contain more edges 
than lines.

A corner is easier
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Finding  Corners

Edge detectors perform poorly at corners.

Corners provide repeatable points for matching, 
so are worth detecting.

Idea:

• Right at a corner, gradient is ill 
defined.

• Near a corner, gradient has two or 
more different values. 
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Edge Detectors Tend to Fail at 
Corners
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Formula for Finding Corners
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∑∑

2

2

yyx

yxx

III
III

C

Look at the second-moment matrix:

Sum over a small region, 
the hypothetical corner

Gradient with respect to x, 
times gradient with respect to y

Matrix is symmetric WHY THIS?
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Simple Case

⎥
⎦

⎤
⎢
⎣

⎡
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⎥
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⎤

⎢
⎢
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⎡
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∑∑
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2

1
2

2

0
0
λ

λ

yyx

yxx

III
III

C

First, consider case where:

This means dominant gradient directions align with 
x or y axis

If either λ is close to 0, then this is not a corner, so 
look for locations where both are large.

Slide credit: David Jacobs
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General Case

Rotate

Shear
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General Case

It can be shown that since C is rotationally 
symmetric:

RRC ⎥
⎦

⎤
⎢
⎣

⎡
= −

2

11

0
0
λ

λ

So every case is like a rotated version of the 
standard one on last slide.

Slide credit: David Jacobs
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So, to detect corners

Filter image.
Compute magnitude of the gradient 
everywhere.
Construct C in a window around the 
target pixel.
Use Linear Algebra to find λ1 and λ2.
If they are both big, we have a corner.
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Gradient Orientation

Closeup
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Corner Detection

Corners are detected 
where the product of the 
ellipse axis lengths 
reaches a local maximum.
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Harris Corners

Originally developed as features for motion tracking
Greatly reduces amount of computation compared to 
tracking every pixel
Translation and rotation invariant (but not scale 
invariant)
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Harris Corner: 
Matlab code

% Harris Corner detector - by Kashif Shahzad
sigma=2; thresh=0.1; sze=11; disp=0;eps=0.0;
dy = [-1 0 1; -1 0 1; -1 0 1];   % Derivative masks
dx = dy'; %dx is the transpose matrix of dy
% Ix and Iy are the horizontal and vertical edges of image
I = imread('rice.png');
imshow(I);
title('\bf Original image');%use bold font for the title
bw=double(I);%convert uint8 to double
Ix = conv2(bw, dx, 'same'); % Calculating the gradient of the image
Iy = conv2(bw, dy, 'same'); %return a matrix the sane size as bw
g = fspecial('gaussian',max(1,fix(6*sigma)), sigma); %define Gaussian filter
Ix2 = conv2(Ix.^2, g, 'same'); %Smoothed squared image derivatives
Iy2 = conv2(Iy.^2, g, 'same');
Ixy = conv2(Ix.*Iy, g, 'same');
cornerness = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps); %flexible formulations
mx = ordfilt2(cornerness,sze^2,ones(sze)); % Grey-scale dilate
cornerness = (cornerness==mx)&(cornerness>thresh); % Find maxima
[rws,cols] = find(cornerness); % Find row,col coords.
figure;imshow(bw,[0 255]);
hold on;
p=[cols rws];
plot(p(:,1),p(:,2),'or'); % display corners as red circles
title('\bf Harris Corners');
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Example (σ=0.1)
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Example (σ=0.01)
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Example (σ=0.001)
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Reading: Matching with Invariant 
Features  (www.cs.washington.edu, computer vision course )

http://www.cs.washington.edu/
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Harris corner detector

C.Harris, M.Stephens. “A Combined 
Corner and Edge Detector”. 1988
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The Basic Idea

We should easily recognize the point by 
looking through a small window
Shifting a window in any direction should 
give a large change in intensity
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Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions
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Harris Detector: Mathematics

[ ]2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −∑

Change of intensity for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside
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Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

For small shifts [u,v] we have a bilinear approximation:

2

2
,

( , ) x x y

x y x y y

I I I
M w x y

I I I
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

where M is a 2×2 matrix computed from image derivatives:
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Harris Detector: Mathematics

[ ]( , ) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

direction of the 
slowest change

direction of the 
fastest change

Intensity change in shifting window: eigenvalue analysis

λ1, λ2 – eigenvalues of M

(λmax)-1/2

(λmin)-1/2

Ellipse E(u,v) = const

Why? Optional assignment
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Harris Detector: Mathematics

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of 
image points using 
eigenvalues of M:
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Harris Detector: Mathematics
Measure of corner response:

( )2det traceR M k M= −

1 2

1 2

det
trace

M
M

λ λ
λ λ

=
= +

(k – empirical constant, k = 0.04-0.06)
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Harris Detector: Mathematics

λ1

λ2 “Corner”

“Edge”

“Edge”

“Flat”

R > 0

R < 0

R < 0|R| small

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region
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Harris Detector

The Algorithm:
Find points with large corner response 
function  R (R > threshold)
Take the points of local maxima of R
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Harris Detector: Workflow



149

Harris Detector: Workflow
Compute corner response R
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Harris Detector: Workflow
Find points with large corner response: R>threshold
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Harris Detector: Workflow
Take only the points of local maxima of R
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Harris Detector: Workflow
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Harris Detector: Summary
Average intensity change in direction [u,v] can be 
expressed as a bilinear form: 

Describe a point in terms of eigenvalues of M:
measure of corner response

A good (corner) point should have a large intensity 
change in all directions, i.e. R should be large 
positive

[ ]( , ) ,
u

E u v u v M
v

⎡ ⎤
≅ ⎢ ⎥

⎣ ⎦

( )2
1 2 1 2R kλ λ λ λ= − +
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Harris Detector: Some 
Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation
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Harris Detector: Some 
Properties

Partial invariance to affine intensity change

 Only derivatives are used => 
invariance to intensity shift: I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)
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Harris Detector: Some 
Properties

But: non-invariant to image scale!

All points will be 
classified as edges

Corner !
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Models of Image Change
Geometry

Rotation
Similarity (rotation + uniform scale)

Affine (scale dependent on direction)
valid for: orthographic camera, locally 
planar object

Photometry
Affine intensity change (I → a I + b)
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Scale Invariant Detection
Consider regions (e.g. circles) of different 
sizes around a point
Regions of corresponding sizes will look the 
same in both images
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Scale Invariant Detection
The problem: how do we choose corresponding 
circles independently in each image?
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Today’s Goals

Features Overview
Canny Edge Detector
Harris Corner Detector
Templates and Image Pyramid
SIFT Features
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Problem: Features for Recognition
Want to find … in here
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Correlation(相关)

How do we locate the template in the image?
Minimize

( ) ( ) ( )[ ]∑∑ −−−=
m n

jnimtnmfjiE 2,,,

= f 2 m,n( )+ t 2 m − i,n − j( )− 2 f m,n( )t m − i,n − j( )⎡⎣ ⎤⎦
n

∑
m
∑

Maximize
( ) ( ) ( )∑∑ −−=

m n
tf nmfjnimtjiR ,,, Cross‐correlation

template
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Cauchy inequality (柯西不等式)

Correlation (相关)

cabcabcba ++≥++ 222

222222 444 cbacba ++≥++

R{(a,b,c), (a,b,c)}> R{(a,b,c), (b,c,a)}

R{(a,b,c), (4a,4b,4c)}> R{(a,b,c), (a,b,c)} ?
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Cross-correlation (互相关)

( ) ( ) ( )∑∑ −−=
m n

tf nmfjnimtjiR ,,, ftRtf ⊗=

Note: tfft ⊗≠⊗

ffRff ⊗= Auto‐correlation

( ) ( ) ( )ARBRCR tftftf >> We need               to be the maximum!  ( )ARtf

A B C
f

t

Problem:
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Cauchy inequality (柯西不等式)

Correlation

Corr(A,B)=dot(A,B)/sqrt(|A||B|)

Corr{(a,b,c), (4a,4b,4c)}= Corr{(a,b,c), (a,b,c)}=1.0
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Normalized Correlation
Account for energy differences

( )
( ) ( )

( ) ( )
2

1

2
2

1
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,

⎥
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⎤
⎢
⎣

⎡
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⎣

⎡
−−

−−
=

∑∑∑∑
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m nm n

m n
tf
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jiN
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onion = imread('onion.png');
peppers = imread('peppers.png');
imshow(onion);
figure, imshow(peppers);
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2))；(ypeak-size(sub_onion,1))];
rect_offset = [(rect_peppers(1)-rect_onion(1))；(rect_peppers(2)-rect_onion(2))];
offset = corr_offset + rect_offset;
xoffset = offset(1);
yoffset = offset(2);
xbegin = round(xoffset+1);
xend = round(xoffset+ size(onion,2));
ybegin = round(yoffset+1);
yend = round(yoffset+size(onion,1));
extracted_onion = peppers(ybegin:yend,xbegin:xend,:);
recovered_onion = uint8(zeros(size(peppers)));
recovered_onion(ybegin:yend,xbegin:xend,:) = onion;
[m,n,p] = size(peppers);
mask = ones(m,n);
i = find(recovered_onion(:,:,1)==0);
mask(i) = .2; 
figure, imshow(peppers(:,:,1))；
hold on；
h = imshow(recovered_onion); 
set(h,'AlphaData',mask);

Normalized 
Correlation
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Templates

Find an object in an image!

Want Invariance!
Scaling
Rotation
Illumination
Deformation
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Template Convolution
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Template Convolution
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Convolution with Templates

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

No
No

No

Maybe
No
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Scale Invariance: Image Pyramid
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Templates with Image 
Pyramid

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

No
Yes

No

Maybe
No
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Templates
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Optional Assignment—
Feature detector

Point feature detector
Line feature detector
Conic feature detector
Invariance under different cases
Feature matching/Correspondence
……
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Today’s Goals

Canny Edge Detector
Harris Corner Detector
Hough Transform
Templates and Image Pyramid
SIFT Features
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Appendix
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SIFT

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

Yes
Yes

Yes

Maybe
Yes
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Invariance to …

Scaling and rotation Viewpoint Illumination
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SIFT Reference
Distinctive image features from scale-invariant 
keypoints. David G. Lowe, International Journal of 
Computer Vision, 60, 2 (2004), pp. 91-110.

SIFT = Scale Invariant Feature Transform
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Invariant Local Features
Image content is transformed into local feature 
coordinates that are invariant to translation, 
rotation, scale, and other imaging parameters

SIFT Features
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Advantages of invariant local features

Locality: features are local, so robust to 
occlusion and clutter (no prior segmentation)

Distinctiveness: individual features can be 
matched to a large database of objects

Quantity: many features can be generated for 
even small objects

Efficiency: close to real-time performance

Extensibility: can easily be extended to wide 
range of differing feature types, with each adding 
robustness
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SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max, 

for may different scales; non-maximum suppression, find local 
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function. 
Compute center with sub-pixel accuracy by setting first derivative 
to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to 
achieve scale invariance, by finding the strongest second 
derivative direction in the smoothed image (possibly multiple 
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of 
the local image region in a 4x4 pixel region. Do this for 4x4 
regions of that size. Orient so that largest gradient points up 
(possibly multiple solutions). Result: feature vector with 128 
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera 
saturation.
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SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max, 

for may different scales; non-maximum suppression, find local 
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function. 
Compute center with sub-pixel accuracy by setting first 
derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to 
achieve scale invariance, by finding the strongest second 
derivative direction in the smoothed image (possibly multiple 
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of 
the local image region in a 4x4 pixel region. Do this for 4x4 
regions of that size. Orient so that largest gradient points up 
(possibly multiple solutions). Result: feature vector with 128 
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera 
saturation.
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Finding “Keypoints” (Corners)

Idea: Find Corners, but scale invariance

Approach:
Run linear filter (diff of Gaussians)
At different resolutions of image 
pyramid
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Difference of Gaussians

Minus

Equals
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Difference of Gaussians

surf(fspecial('gaussian',40,4))
surf(fspecial('gaussian',40,8))
surf(fspecial('gaussian',40,8) - fspecial('gaussian',40,4))
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Find Corners with DiffOfGauss
im =imread('bridge.jpg');
bw = double(im(:,:,1)) / 256;

for i = 1 : 10
gaussD = fspecial('gaussian',40,2*i) -

fspecial('gaussian',40,i);
res = abs(conv2(bw, gaussD,  'same'));
res = res / max(max(res));
imshow(res) ; title(['\bf i = ' num2str(i)]); drawnow

end
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Gaussian Kernel Size i=1
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Gaussian Kernel Size i=2



191

Gaussian Kernel Size i=3
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Gaussian Kernel Size i=4
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Gaussian Kernel Size i=5
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Gaussian Kernel Size i=6
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Gaussian Kernel Size i=7
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Gaussian Kernel Size i=8
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Gaussian Kernel Size i=9



198

Gaussian Kernel Size i=10



199

Key point localization

Detect maxima and 
minima of difference-of-
Gaussian in scale space

Blur 

Res ample

Subtra ct
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Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 above threshold
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SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max, 

for may different scales; non-maximum suppression, find local 
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function. 
Compute center with sub-pixel accuracy by setting first derivative 
to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to 
achieve scale invariance, by finding the strongest second 
derivative direction in the smoothed image (possibly multiple 
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of 
the local image region in a 4x4 pixel region. Do this for 4x4 
regions of that size. Orient so that largest gradient points up 
(possibly multiple solutions). Result: feature vector with 128 
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera 
saturation.
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Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures 
(Harris approach)

(c) 729 left after peak value threshold (from 832)
(d) 536 left after testing ratio of principle curvatures
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SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max, 

for may different scales; non-maximum suppression, find local 
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function. 
Compute center with sub-pixel accuracy by setting first 
derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to 
achieve scale invariance, by finding the strongest second 
derivative direction in the smoothed image (possibly multiple 
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of 
the local image region in a 4x4 pixel region. Do this for 4x4 
regions of that size. Orient so that largest gradient points up 
(possibly multiple solutions). Result: feature vector with 128 
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera 
saturation.
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Select canonical orientation

Create histogram of local 
gradient directions 
computed at selected scale
Assign canonical 
orientation at peak of 
smoothed histogram
Each key specifies stable 
2D coordinates (x, y, scale, 
orientation)

0 2π
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SIFT On-A-Slide
1. Enforce invariance to scale: Compute Gaussian difference max, 

for may different scales; non-maximum suppression, find local 
maxima: keypoint candidates

2. Localizable corner: For each maximum fit quadratic function. 
Compute center with sub-pixel accuracy by setting first 
derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints
for which this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to 
achieve scale invariance, by finding the strongest second 
derivative direction in the smoothed image (possibly multiple 
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of 
the local image region in a 4x4 pixel region. Do this for 4x4 
regions of that size. Orient so that largest gradient points up 
(possibly multiple solutions). Result: feature vector with 128 
values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination.
Then threshold all gradients, to become invariant to camera 
saturation.
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SIFT vector formation
Thresholded image gradients are sampled over 16x16 
array of locations in scale space
Create array of orientation histograms
8 orientations x 4x4 histogram array = 128 dimensions



207

Nearest-neighbor matching to 
feature database

Hypotheses are generated by approximate 
nearest neighbor matching of each feature to 
vectors in the database 

SIFT use best-bin-first (Beis & Lowe, 97) 
modification to k-d tree algorithm
Use heap data structure to identify bins in order 
by their distance from query point

Result: Can give speedup by factor of 1000 while 
finding nearest neighbor (of interest) 95% of the 
time
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3D Object Recognition

Extract outlines 
with background 
subtraction
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3D Object Recognition

Only 3 keys are needed 
for recognition, so 
extra keys provide 
robustness
Affine model is no 
longer as accurate
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Recognition under occlusion
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Test of illumination 
invariance

Same image under differing illumination

273 keys verified in final match
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Examples of view interpolation
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Location recognition
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SIFT

Invariances:
Scaling
Rotation
Illumination
Deformation

Provides
Good localization

Yes
Yes

Yes

Maybe
Yes
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